메뉴 건너뛰기




Volumn 11, Issue 3, 2001, Pages 315-329

No arbitrage in discrete time under portfolio constraints

Author keywords

Arbitrage; Convex portfolio constraints; Fundamental theorem of asset pricing; Stochastic process; Superreplication cost

Indexed keywords


EID: 0041027085     PISSN: 09601627     EISSN: None     Source Type: Journal    
DOI: 10.1111/1467-9965.00117     Document Type: Article
Times cited : (24)

References (17)
  • 3
    • 0001368451 scopus 로고
    • Convex duality in constrained portfolio optimization
    • CVITANIĆ, J., and I. KARATZAS (1992): Convex Duality in Constrained Portfolio Optimization, Ann. Appl. Prob. 3, 767-818.
    • (1992) Ann. Appl. Prob. , vol.3 , pp. 767-818
    • Cvitanić, J.1    Karatzas, I.2
  • 4
    • 0000250634 scopus 로고
    • Hedging contingent claims with constrained portfolios
    • CVITANIĆ, J., and I. KARATZAS (1993): Hedging Contingent Claims with Constrained Portfolios, Ann. Appl. Prob. 3, 652-681.
    • (1993) Ann. Appl. Prob. , vol.3 , pp. 652-681
    • Cvitanić, J.1    Karatzas, I.2
  • 5
    • 0000916023 scopus 로고
    • Equivalent martingale measures and no-arbitrage in stochastic securities market models
    • DALANG, R. C., A. MORTON, and W. WILLINGER (1990): Equivalent Martingale Measures and No-Arbitrage in Stochastic Securities Market Models, Stoch. Stoc. Rep. 29, 185-201.
    • (1990) Stoch. Stoc. Rep. , vol.29 , pp. 185-201
    • Dalang, R.C.1    Morton, A.2    Willinger, W.3
  • 6
    • 0031231983 scopus 로고    scopus 로고
    • Optional decompositions under constraints
    • FÖLLMER, H., and D. KRAMKOV, (1997): Optional Decompositions under Constraints, Prob. Theory & Rel. Fields 109, 1-25.
    • (1997) Prob. Theory & Rel. Fields , vol.109 , pp. 1-25
    • Föllmer, H.1    Kramkov, D.2
  • 7
    • 38649141305 scopus 로고
    • Martingale and arbitrage in multiperiods securities markets
    • HARRISON, J. M., and D. M. KREPS (1979): Martingale and Arbitrage in Multiperiods Securities Markets, J. Econ. Theory 20, 381-408.
    • (1979) J. Econ. Theory , vol.20 , pp. 381-408
    • Harrison, J.M.1    Kreps, D.M.2
  • 8
    • 41649091143 scopus 로고
    • Martingales and stochastic integrals in the theory of continuous trading
    • HARRISON, J. M., and S. PLISKA (1981): Martingales and Stochastic Integrals in the Theory of Continuous Trading, Stoch. Process. Appl. 11, 215-260.
    • (1981) Stoch. Process. Appl. , vol.11 , pp. 215-260
    • Harrison, J.M.1    Pliska, S.2
  • 9
    • 84986841414 scopus 로고
    • Arbitrage in securities markets with short-sales constraints
    • JOUINI, E., and H. KALLAL (1995): Arbitrage in Securities Markets with Short-Sales Constraints, Math. Finance 3, 197-232.
    • (1995) Math. Finance , vol.3 , pp. 197-232
    • Jouini, E.1    Kallal, H.2
  • 10
    • 0011494245 scopus 로고
    • No-arbitrage and equivalent martingale measures: An elementary proof of the Harrison-Pliska theorem
    • KABANOV, Yu, and D. KRAMKOV (1994): No-Arbitrage and Equivalent Martingale Measures: An Elementary Proof of the Harrison-Pliska Theorem, Theory Prob. Appl. 39, 523-526.
    • (1994) Theory Prob. Appl. , vol.39 , pp. 523-526
    • Kabanov, Y.U.1    Kramkov, D.2
  • 11
    • 0030490222 scopus 로고    scopus 로고
    • On the pricing of contingent claims under constraints
    • KARATZAS, I., and S. Kou (1996): On the Pricing of Contingent Claims under Constraints, Ann. of Appl. Prob. 6, 321-369.
    • (1996) Ann. of Appl. Prob. , vol.6 , pp. 321-369
    • Karatzas, I.1    Kou, S.2
  • 12
    • 0003105093 scopus 로고
    • Arbitrage and equilibrium in economies with infinitely many commodities
    • KREPS, D. (1981): Arbitrage and Equilibrium in Economies with Infinitely Many Commodities, J. Math. Econ. 8, 15-35.
    • (1981) J. Math. Econ. , vol.8 , pp. 15-35
    • Kreps, D.1
  • 13
    • 0000483690 scopus 로고    scopus 로고
    • The fundamental theorem of asset pricing with cone constraints
    • PHAM, H., and N. TOUZI (1999): The Fundamental Theorem of Asset Pricing with Cone Constraints, J. Math. Econ., 31, 265-279.
    • (1999) J. Math. Econ. , vol.31 , pp. 265-279
    • Pham, H.1    Touzi, N.2
  • 15
    • 38249008697 scopus 로고
    • A Hilbert space proof of the fundamental theorem of asset pricing in finite discrete time
    • SCHACHERMAYER, W. (1992): A Hilbert Space Proof of the Fundamental Theorem of Asset Pricing in Finite Discrete Time, Insurance: Math. Econ. 11, 249-257.
    • (1992) Insurance: Math. Econ. , vol.11 , pp. 249-257
    • Schachermayer, W.1
  • 16
    • 0029687482 scopus 로고    scopus 로고
    • On the existence of equivalent τ-measures in finite discrete time
    • SCHÜRGER, K. (1996): On the Existence of Equivalent τ-Measures in Finite Discrete Time, Stoch. Process. Appl. 61, 109-128.
    • (1996) Stoch. Process. Appl. , vol.61 , pp. 109-128
    • Schürger, K.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.