메뉴 건너뛰기




Volumn 25, Issue 1, 1997, Pages 115-132

Stochastic particle approximations for generalized Boltzmann models and convergence estimates

(2)  Graham, Carl a   Méléard, Sylvie a  

a NONE

Author keywords

Boltzmann equation; Coupling; Monte Carlo algorithms; Nonlinear diffusion with jumps; Propagation of chaos; Random graphs and trees

Indexed keywords


EID: 0040831290     PISSN: 00911798     EISSN: None     Source Type: Journal    
DOI: 10.1214/aop/1024404281     Document Type: Article
Times cited : (117)

References (22)
  • 1
    • 0001796378 scopus 로고
    • A convergence proof for Nanbu's simulation method for the full Boltzmann equation
    • BABOVSKY, H. and ILLNER, R. (1994). A convergence proof for Nanbu's simulation method for the full Boltzmann equation. SIAM J. Numer. Anal. 26 45-65.
    • (1994) SIAM J. Numer. Anal. , vol.26 , pp. 45-65
    • Babovsky, H.1    Illner, R.2
  • 4
    • 0001089576 scopus 로고
    • On the cauchy problem for the Boltzmann equation: Global existence and weak stability
    • DIPERNA, R. J. and LIONS, P. L. (1989). On the Cauchy problem for the Boltzmann equation: global existence and weak stability. Ann. Math. 130 321-366.
    • (1989) Ann. Math. , vol.130 , pp. 321-366
    • Diperna, R.J.1    Lions, P.L.2
  • 5
    • 0040771810 scopus 로고
    • Nonlinear diffusion with jumps
    • GRAHAM, C. (1992). Nonlinear diffusion with jumps. Ann. Inst. H. Poincaré 28 393-402.
    • (1992) Ann. Inst. H. Poincaré , vol.28 , pp. 393-402
    • Graham, C.1
  • 6
    • 0039586201 scopus 로고
    • Mckean-Vlasov Ito-Skorohod equations, and nonlinear diffusions with discrete jump sets
    • GRAHAM, C. (1992). McKean-Vlasov Ito-Skorohod equations, and nonlinear diffusions with discrete jump sets. Stochastic Process. Appl. 40 69-82.
    • (1992) Stochastic Process. Appl. , vol.40 , pp. 69-82
    • Graham, C.1
  • 7
    • 38249004368 scopus 로고
    • Propagation of chaos for a fully connected loss network with alternate routing
    • GRAHAM, C. and MÉLÉARD, S. (1993). Propagation of chaos for a fully connected loss network with alternate routing. Stochastic Process. Appl. 44 159-180.
    • (1993) Stochastic Process. Appl. , vol.44 , pp. 159-180
    • Graham, C.1    Méléard, S.2
  • 8
    • 21844481851 scopus 로고
    • Chaos hypothesis for a system interacting through shared resources
    • GRAHAM, C. and MÉLÉARD, S. (1994). Chaos hypothesis for a system interacting through shared resources. Probab. Theory Related Fields 100 157-173.
    • (1994) Probab. Theory Related Fields , vol.100 , pp. 157-173
    • Graham, C.1    Méléard, S.2
  • 9
    • 84948337021 scopus 로고
    • On simulation methods for the Boltzmann equation
    • ILLNER, R. and NEUNZERT, H. (1987). On simulation methods for the Boltzmann equation. Transport Theory Statist. Phys. 16 141-154.
    • (1987) Transport Theory Statist. Phys. , vol.16 , pp. 141-154
    • Illner, R.1    Neunzert, H.2
  • 10
    • 0002639718 scopus 로고
    • Weak convergence of sequences of semimartingales with applications to multitype branching processes
    • JOFFE, A. and MÉTIVIER, M. (1986). Weak convergence of sequences of semimartingales with applications to multitype branching processes. Adv. in Appl. Probab. 18 20-65.
    • (1986) Adv. in Appl. Probab. , vol.18 , pp. 20-65
    • Joffe, A.1    Métivier, M.2
  • 11
    • 0001518823 scopus 로고
    • Time evolution of large classical systems
    • Springer, Berlin
    • LANFORD, III, O. E. (1975). Time evolution of large classical systems. Lecture Notes in Phys. 38 1-111. Springer, Berlin.
    • (1975) Lecture Notes in Phys. , vol.38 , pp. 1-111
    • Lanford O.E. III1
  • 12
    • 0007081220 scopus 로고
    • Large deviations for long range interacting particle systems with jumps
    • LÉONARD, C. (1995). Large deviations for long range interacting particle systems with jumps. Ann. Inst. H. Poincaré.
    • (1995) Ann. Inst. H. Poincaré
    • Léonard, C.1
  • 13
    • 0001144503 scopus 로고
    • Interrelations between various direct simulation methods for solving the Boltzmann equation
    • NANBU, K. (1983). Interrelations between various direct simulation methods for solving the Boltzmann equation. J. Phys. Soc. Japan 52 3382-3388.
    • (1983) J. Phys. Soc. Japan , vol.52 , pp. 3382-3388
    • Nanbu, K.1
  • 15
    • 0002366346 scopus 로고
    • Introduction to the theory of random particle methods for Boltzmann equation
    • Singapore
    • PERTHAME, B. (1994). Introduction to the theory of random particle methods for Boltzmann equation. In Progresses on Kinetic Theory. World Scientific, Singapore.
    • (1994) Progresses on Kinetic Theory. World Scientific
    • Perthame, B.1
  • 16
    • 0039586214 scopus 로고    scopus 로고
    • On some large systems of random particles which approximate scalar conservation laws
    • To appear
    • PERTHAME, B. and PULVIRENTI, M. (1996). On some large systems of random particles which approximate scalar conservation laws. Asympt. Anal. To appear.
    • (1996) Asympt. Anal.
    • Perthame, B.1    Pulvirenti, M.2
  • 18
    • 34250138528 scopus 로고
    • Equations de type de Boltzmann, spatialement homogènes
    • SZNITMAN, A. S. (1984). Equations de type de Boltzmann, spatialement homogènes. Z. Wahrsch. Verw. Gebeite 66 559-592.
    • (1984) Z. Wahrsch. Verw. Gebeite , vol.66 , pp. 559-592
    • Sznitman, A.S.1
  • 19
    • 0001105004 scopus 로고
    • Ecole d'Été de Probabilités de Saint-Flour 1989
    • Springer, Berlin
    • SZNITMAN, A. S. (1991). Propagation of chaos. Ecole d'Été de Probabilités de Saint-Flour 1989 (Lecture Notes in Math. 1464 165-251). Springer, Berlin.
    • (1991) Lecture Notes in Math. , vol.1464 , pp. 165-251
    • Sznitman, A.S.1
  • 20
    • 84972542001 scopus 로고
    • Derivation of the Boltzmann equation from particle dynamics
    • UCHIYAMA, K. (1988). Derivation of the Boltzmann equation from particle dynamics. Hiroshima Math. J. 18 245-297.
    • (1988) Hiroshima Math. J. , vol.18 , pp. 245-297
    • Uchiyama, K.1
  • 21
    • 34249834360 scopus 로고
    • A convergence proof for Bird's direct simulation method for the Boltzmann equation
    • WAGNER, W. (1992). A convergence proof for Bird's direct simulation method for the Boltzmann equation. J. Statist. Phys. 66 1011-1044.
    • (1992) J. Statist. Phys. , vol.66 , pp. 1011-1044
    • Wagner, W.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.