-
1
-
-
0001796378
-
A convergence proof for Nanbu's simulation method for the full Boltzmann equation
-
BABOVSKY, H. and ILLNER, R. (1994). A convergence proof for Nanbu's simulation method for the full Boltzmann equation. SIAM J. Numer. Anal. 26 45-65.
-
(1994)
SIAM J. Numer. Anal.
, vol.26
, pp. 45-65
-
-
Babovsky, H.1
Illner, R.2
-
4
-
-
0001089576
-
On the cauchy problem for the Boltzmann equation: Global existence and weak stability
-
DIPERNA, R. J. and LIONS, P. L. (1989). On the Cauchy problem for the Boltzmann equation: global existence and weak stability. Ann. Math. 130 321-366.
-
(1989)
Ann. Math.
, vol.130
, pp. 321-366
-
-
Diperna, R.J.1
Lions, P.L.2
-
5
-
-
0040771810
-
Nonlinear diffusion with jumps
-
GRAHAM, C. (1992). Nonlinear diffusion with jumps. Ann. Inst. H. Poincaré 28 393-402.
-
(1992)
Ann. Inst. H. Poincaré
, vol.28
, pp. 393-402
-
-
Graham, C.1
-
6
-
-
0039586201
-
Mckean-Vlasov Ito-Skorohod equations, and nonlinear diffusions with discrete jump sets
-
GRAHAM, C. (1992). McKean-Vlasov Ito-Skorohod equations, and nonlinear diffusions with discrete jump sets. Stochastic Process. Appl. 40 69-82.
-
(1992)
Stochastic Process. Appl.
, vol.40
, pp. 69-82
-
-
Graham, C.1
-
7
-
-
38249004368
-
Propagation of chaos for a fully connected loss network with alternate routing
-
GRAHAM, C. and MÉLÉARD, S. (1993). Propagation of chaos for a fully connected loss network with alternate routing. Stochastic Process. Appl. 44 159-180.
-
(1993)
Stochastic Process. Appl.
, vol.44
, pp. 159-180
-
-
Graham, C.1
Méléard, S.2
-
8
-
-
21844481851
-
Chaos hypothesis for a system interacting through shared resources
-
GRAHAM, C. and MÉLÉARD, S. (1994). Chaos hypothesis for a system interacting through shared resources. Probab. Theory Related Fields 100 157-173.
-
(1994)
Probab. Theory Related Fields
, vol.100
, pp. 157-173
-
-
Graham, C.1
Méléard, S.2
-
9
-
-
84948337021
-
On simulation methods for the Boltzmann equation
-
ILLNER, R. and NEUNZERT, H. (1987). On simulation methods for the Boltzmann equation. Transport Theory Statist. Phys. 16 141-154.
-
(1987)
Transport Theory Statist. Phys.
, vol.16
, pp. 141-154
-
-
Illner, R.1
Neunzert, H.2
-
10
-
-
0002639718
-
Weak convergence of sequences of semimartingales with applications to multitype branching processes
-
JOFFE, A. and MÉTIVIER, M. (1986). Weak convergence of sequences of semimartingales with applications to multitype branching processes. Adv. in Appl. Probab. 18 20-65.
-
(1986)
Adv. in Appl. Probab.
, vol.18
, pp. 20-65
-
-
Joffe, A.1
Métivier, M.2
-
11
-
-
0001518823
-
Time evolution of large classical systems
-
Springer, Berlin
-
LANFORD, III, O. E. (1975). Time evolution of large classical systems. Lecture Notes in Phys. 38 1-111. Springer, Berlin.
-
(1975)
Lecture Notes in Phys.
, vol.38
, pp. 1-111
-
-
Lanford O.E. III1
-
12
-
-
0007081220
-
Large deviations for long range interacting particle systems with jumps
-
LÉONARD, C. (1995). Large deviations for long range interacting particle systems with jumps. Ann. Inst. H. Poincaré.
-
(1995)
Ann. Inst. H. Poincaré
-
-
Léonard, C.1
-
13
-
-
0001144503
-
Interrelations between various direct simulation methods for solving the Boltzmann equation
-
NANBU, K. (1983). Interrelations between various direct simulation methods for solving the Boltzmann equation. J. Phys. Soc. Japan 52 3382-3388.
-
(1983)
J. Phys. Soc. Japan
, vol.52
, pp. 3382-3388
-
-
Nanbu, K.1
-
14
-
-
0001461145
-
Computational methods for the Boltzmann equation
-
R. Spigler, ed. Kluwer, Dordrecht
-
NEUNZERT, H., GROPENGEISSER, F. and STRUCKMEIER, J. (1991). Computational methods for the Boltzmann equation. In Applied and Industrial Mathematics (R. Spigler, ed.) 111-140. Kluwer, Dordrecht.
-
(1991)
Applied and Industrial Mathematics
, pp. 111-140
-
-
Neunzert, H.1
Gropengeisser, F.2
Struckmeier, J.3
-
15
-
-
0002366346
-
Introduction to the theory of random particle methods for Boltzmann equation
-
Singapore
-
PERTHAME, B. (1994). Introduction to the theory of random particle methods for Boltzmann equation. In Progresses on Kinetic Theory. World Scientific, Singapore.
-
(1994)
Progresses on Kinetic Theory. World Scientific
-
-
Perthame, B.1
-
16
-
-
0039586214
-
On some large systems of random particles which approximate scalar conservation laws
-
To appear
-
PERTHAME, B. and PULVIRENTI, M. (1996). On some large systems of random particles which approximate scalar conservation laws. Asympt. Anal. To appear.
-
(1996)
Asympt. Anal.
-
-
Perthame, B.1
Pulvirenti, M.2
-
17
-
-
0038993498
-
-
Preprint 49, Institut fur Angewandte Analysis und Stochastik, Berlin
-
PULVIRENTI, M., WAGNER, W. and ZAVELANI ROSSI, M. B. (1993). Convergence of particle schemes for the Boltzmann equation. Preprint 49, Institut fur Angewandte Analysis und Stochastik, Berlin.
-
(1993)
Convergence of Particle Schemes for the Boltzmann Equation
-
-
Pulvirenti, M.1
Wagner, W.2
Zavelani Rossi, M.B.3
-
18
-
-
34250138528
-
Equations de type de Boltzmann, spatialement homogènes
-
SZNITMAN, A. S. (1984). Equations de type de Boltzmann, spatialement homogènes. Z. Wahrsch. Verw. Gebeite 66 559-592.
-
(1984)
Z. Wahrsch. Verw. Gebeite
, vol.66
, pp. 559-592
-
-
Sznitman, A.S.1
-
19
-
-
0001105004
-
Ecole d'Été de Probabilités de Saint-Flour 1989
-
Springer, Berlin
-
SZNITMAN, A. S. (1991). Propagation of chaos. Ecole d'Été de Probabilités de Saint-Flour 1989 (Lecture Notes in Math. 1464 165-251). Springer, Berlin.
-
(1991)
Lecture Notes in Math.
, vol.1464
, pp. 165-251
-
-
Sznitman, A.S.1
-
20
-
-
84972542001
-
Derivation of the Boltzmann equation from particle dynamics
-
UCHIYAMA, K. (1988). Derivation of the Boltzmann equation from particle dynamics. Hiroshima Math. J. 18 245-297.
-
(1988)
Hiroshima Math. J.
, vol.18
, pp. 245-297
-
-
Uchiyama, K.1
-
21
-
-
34249834360
-
A convergence proof for Bird's direct simulation method for the Boltzmann equation
-
WAGNER, W. (1992). A convergence proof for Bird's direct simulation method for the Boltzmann equation. J. Statist. Phys. 66 1011-1044.
-
(1992)
J. Statist. Phys.
, vol.66
, pp. 1011-1044
-
-
Wagner, W.1
|