-
1
-
-
0000654592
-
Chaotic states and routes to chaos in the forced pendulum
-
D. D'Humicres, M. R. Beasley, B. A. Huberman, and A. Lihchaber, "Chaotic states and routes to chaos in the forced pendulum," Phys. Rev. A 26, 3483-3496 (1982).
-
(1982)
Phys. Rev. A
, vol.26
, pp. 3483-3496
-
-
D'Humicres, D.1
Beasley, M.R.2
Huberman, B.A.3
Lihchaber, A.4
-
3
-
-
0002696462
-
On a new type of dynamical stability
-
A. Stephenson, "On a new type of dynamical stability," Mem. Proc. Manch. Lit. Philos. Soc. 52, 1-10 (1908); "On induced stability," Philos. Mag. 15, 233-236 (1908). Stephenson predicted stable states for double and triple inverted pendulums as well, in ibid. 17, 765-766 (1909), which have been studied in more detail by D. J. Acheson, "A pendulum theorem," Proc. R. Soc. London A 443, 239-245 (1993); "Multiple-nodding oscillations of a driven inverted pendulum," ibid. 448, 89-95 (1995).
-
(1908)
Mem. Proc. Manch. Lit. Philos. Soc.
, vol.52
, pp. 1-10
-
-
Stephenson, A.1
-
4
-
-
0000450303
-
On induced stability
-
A. Stephenson, "On a new type of dynamical stability," Mem. Proc. Manch. Lit. Philos. Soc. 52, 1-10 (1908); "On induced stability," Philos. Mag. 15, 233-236 (1908). Stephenson predicted stable states for double and triple inverted pendulums as well, in ibid. 17, 765-766 (1909), which have been studied in more detail by D. J. Acheson, "A pendulum theorem," Proc. R. Soc. London A 443, 239-245 (1993); "Multiple-nodding oscillations of a driven inverted pendulum," ibid. 448, 89-95 (1995).
-
(1908)
Philos. Mag.
, vol.15
, pp. 233-236
-
-
-
5
-
-
0040377096
-
-
A. Stephenson, "On a new type of dynamical stability," Mem. Proc. Manch. Lit. Philos. Soc. 52, 1-10 (1908); "On induced stability," Philos. Mag. 15, 233-236 (1908). Stephenson predicted stable states for double and triple inverted pendulums as well, in ibid. 17, 765-766 (1909), which have been studied in more detail by D. J. Acheson, "A pendulum theorem," Proc. R. Soc. London A 443, 239-245 (1993); "Multiple-nodding oscillations of a driven inverted pendulum," ibid. 448, 89-95 (1995).
-
(1909)
Philos. Mag.
, vol.17
, pp. 765-766
-
-
Stephenson1
-
6
-
-
0000380545
-
A pendulum theorem
-
A. Stephenson, "On a new type of dynamical stability," Mem. Proc. Manch. Lit. Philos. Soc. 52, 1-10 (1908); "On induced stability," Philos. Mag. 15, 233-236 (1908). Stephenson predicted stable states for double and triple inverted pendulums as well, in ibid. 17, 765-766 (1909), which have been studied in more detail by D. J. Acheson, "A pendulum theorem," Proc. R. Soc. London A 443, 239-245 (1993); "Multiple-nodding oscillations of a driven inverted pendulum," ibid. 448, 89-95 (1995).
-
(1993)
Proc. R. Soc. London A
, vol.443
, pp. 239-245
-
-
Acheson, D.J.1
-
7
-
-
0002588421
-
Multiple-nodding oscillations of a driven inverted pendulum
-
A. Stephenson, "On a new type of dynamical stability," Mem. Proc. Manch. Lit. Philos. Soc. 52, 1-10 (1908); "On induced stability," Philos. Mag. 15, 233-236 (1908). Stephenson predicted stable states for double and triple inverted pendulums as well, in ibid. 17, 765-766 (1909), which have been studied in more detail by D. J. Acheson, "A pendulum theorem," Proc. R. Soc. London A 443, 239-245 (1993); "Multiple-nodding oscillations of a driven inverted pendulum," ibid. 448, 89-95 (1995).
-
(1995)
Proc. R. Soc. London A
, vol.448
, pp. 89-95
-
-
-
8
-
-
0002132365
-
On the stability of the solutions of Mathieu's equation
-
B. van der Pol and M. J. O. Strutt, "On the stability of the solutions of Mathieu's equation," Philos. Mag. 5, 18-38 (1928).
-
(1928)
Philos. Mag.
, vol.5
, pp. 18-38
-
-
Van Der Pol, B.1
Strutt, M.J.O.2
-
9
-
-
21144474378
-
Stability and Hopf bifurcations in an inverted pendulum
-
J. A. Blackburn, H. J. T. Smith, and N. Grønbech-Jensen, "Stability and Hopf bifurcations in an inverted pendulum," Am. J. Phys. 60, 903-908 (1992).
-
(1992)
Am. J. Phys.
, vol.60
, pp. 903-908
-
-
Blackburn, J.A.1
Smith, H.J.T.2
Grønbech-Jensen, N.3
-
11
-
-
0003932476
-
-
Interscience, New York
-
J. J. Stoker, Nonlinear Vibrations (Interscience, New York, 1950); H. C. Corben and P. Stehle, Classical Mechanics (Wiley, New York, 1960), 2nd ed.; H. Jeffreys and B. S. Jeffreys, Methods of Mathematical Physics (Cambridge U.P., Cambridge, 1972), 3rd ed.
-
(1950)
Nonlinear Vibrations
-
-
Stoker, J.J.1
-
12
-
-
0003437213
-
-
Wiley, New York, 2nd ed.
-
J. J. Stoker, Nonlinear Vibrations (Interscience, New York, 1950); H. C. Corben and P. Stehle, Classical Mechanics (Wiley, New York, 1960), 2nd ed.; H. Jeffreys and B. S. Jeffreys, Methods of Mathematical Physics (Cambridge U.P., Cambridge, 1972), 3rd ed.
-
(1960)
Classical Mechanics
-
-
Corben, H.C.1
Stehle, P.2
-
13
-
-
0003598496
-
-
Cambridge U.P., Cambridge, 3rd ed.
-
J. J. Stoker, Nonlinear Vibrations (Interscience, New York, 1950); H. C. Corben and P. Stehle, Classical Mechanics (Wiley, New York, 1960), 2nd ed.; H. Jeffreys and B. S. Jeffreys, Methods of Mathematical Physics (Cambridge U.P., Cambridge, 1972), 3rd ed.
-
(1972)
Methods of Mathematical Physics
-
-
Jeffreys, H.1
Jeffreys, B.S.2
-
14
-
-
84945561508
-
An analytical solution of the inverted pendulum
-
F. M. Phelps III and J. H. Hunter, Jr., "An analytical solution of the inverted pendulum," Am. J. Phys. 33, 285-295 (1965).
-
(1965)
Am. J. Phys.
, vol.33
, pp. 285-295
-
-
Phelps F.M. III1
Hunter J.H., Jr.2
-
15
-
-
21144461636
-
Experimental study of an inverted pendulum
-
H. J. T. Smith and J. A. Blackburn, "Experimental study of an inverted pendulum," Am. J. Phys. 60, 909-911 (1992).
-
(1992)
Am. J. Phys.
, vol.60
, pp. 909-911
-
-
Smith, H.J.T.1
Blackburn, J.A.2
-
16
-
-
0000280726
-
The inverted pendulum
-
H. P. Kalmus, "The inverted pendulum," Am. J. Phys. 38, 874-878 (1970).
-
(1970)
Am. J. Phys.
, vol.38
, pp. 874-878
-
-
Kalmus, H.P.1
-
17
-
-
0001200924
-
The inverted pendulum
-
A. B. Pippard, "The inverted pendulum," Eur. J. Phys. 8, 203-206 (1987).
-
(1987)
Eur. J. Phys.
, vol.8
, pp. 203-206
-
-
Pippard, A.B.1
-
18
-
-
0039192517
-
The inverted pendulum: A mechanical analog of the quadrupole mass filter
-
M. H. Friedman, J. E. Campana, L. Kelner, E. H. Seeliger, and A. L. Yergey, "The inverted pendulum: A mechanical analog of the quadrupole mass filter," Am. J. Phys. 50, 924-931 (1982).
-
(1982)
Am. J. Phys.
, vol.50
, pp. 924-931
-
-
Friedman, M.H.1
Campana, J.E.2
Kelner, L.3
Seeliger, E.H.4
Yergey, A.L.5
-
19
-
-
0030558389
-
Applications of the Mathieu equation
-
L. Ruby, "Applications of the Mathieu equation," Am. J. Phys. 64, 39-44 (1996).
-
(1996)
Am. J. Phys.
, vol.64
, pp. 39-44
-
-
Ruby, L.1
-
20
-
-
0001594095
-
Inverted pendulum
-
L. Blitzer, "Inverted pendulum," Am. J. Phys. 33, 1076-1078 (1965).
-
(1965)
Am. J. Phys.
, vol.33
, pp. 1076-1078
-
-
Blitzer, L.1
-
23
-
-
0003474751
-
-
Cambridge U.P., Cambridge, 2nd ed
-
W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in C (Cambridge U.P., Cambridge, 1992), 2nd ed
-
(1992)
Numerical Recipes in C
-
-
Press, W.H.1
Teukolsky, S.A.2
Vetterling, W.T.3
Flannery, B.P.4
-
24
-
-
33646388286
-
Fourth-order symplectic integration
-
E. Forest and R. D. Ruth, "Fourth-order symplectic integration," Physica D 43, 105-117 (1990).
-
(1990)
Physica D
, vol.43
, pp. 105-117
-
-
Forest, E.1
Ruth, R.D.2
-
27
-
-
0004002033
-
-
The Mathematical Association of America, Washington, D.C.
-
F. S. Acton, Numerical Methods that Work (The Mathematical Association of America, Washington, D.C., 1990).
-
(1990)
Numerical Methods That Work
-
-
Acton, F.S.1
-
30
-
-
0026698425
-
'In-the-large' behavior of an inverted pendulum with linear stabilization
-
M. G. Henders and A. C. Soudack, "'In-The-Large' behavior of an inverted pendulum with linear stabilization," J. Non-Linear Mech. 27, 129-138 (1992).
-
(1992)
J. Non-linear Mech.
, vol.27
, pp. 129-138
-
-
Henders, M.G.1
Soudack, A.C.2
-
31
-
-
0027663878
-
Stabilization of an inverted pendulum by a layered neural network
-
M. Sekiguchi, T. Sugasaka, and R. Kurazume, "Stabilization of an inverted pendulum by a layered neural network," Fujitsu Sci. Tech. J. 29, 278-286 (1993).
-
(1993)
Fujitsu Sci. Tech. J.
, vol.29
, pp. 278-286
-
-
Sekiguchi, M.1
Sugasaka, T.2
Kurazume, R.3
|