-
1
-
-
0001318567
-
Shuffling cards and stopping times
-
ALDOUS, D. and DIACONIS, P. (1986). Shuffling cards and stopping times. Amer. Math. Monthly 93 333-348.
-
(1986)
Amer. Math. Monthly
, vol.93
, pp. 333-348
-
-
Aldous, D.1
Diaconis, P.2
-
2
-
-
0039960023
-
-
Personal communication
-
ALON, N. (1995). Personal communication.
-
(1995)
-
-
Alon, N.1
-
4
-
-
33750994100
-
1, isoperimetric inequalities for graphs and superconcentrators
-
1, isoperimetric inequalities for graphs and superconcentrators. J. Combin. Theory Ser. B 38 73-88.
-
(1985)
J. Combin. Theory Ser. B
, vol.38
, pp. 73-88
-
-
Alon, N.1
Milman, V.D.2
-
6
-
-
0040553020
-
Representation of group elements as short products
-
BABAI, L. and ERDÖS, P. (1982). Representation of group elements as short products. Ann. Discrete Math. 12 27-30.
-
(1982)
Ann. Discrete Math.
, vol.12
, pp. 27-30
-
-
Babai, L.1
Erdös, P.2
-
7
-
-
0025535126
-
On the diameter of finite groups
-
BABAI, L., HETYEI, G., KANTOR, W. M., LUBOTZKY, A. and SERESS, A. (1990). On the diameter of finite groups. Proc. 31st IEEE FOCS 857-865.
-
(1990)
Proc. 31st IEEE FOCS
, pp. 857-865
-
-
Babai, L.1
Hetyei, G.2
Kantor, W.M.3
Lubotzky, A.4
Seress, A.5
-
8
-
-
0023535763
-
On the second eigenvalue of random regular graphs
-
BRODER, A. and SHAMIR, E. (1987). On the second eigenvalue of random regular graphs. Proc. 28th IEEE FOCS 286-294.
-
(1987)
Proc. 28th IEEE FOCS
, pp. 286-294
-
-
Broder, A.1
Shamir, E.2
-
9
-
-
84968468352
-
Diameters and eigenvalues
-
CHUNG, F. R. K. (1989). Diameters and eigenvalues. J. Amer. Math. Soc. 2 187-196.
-
(1989)
J. Amer. Math. Soc.
, vol.2
, pp. 187-196
-
-
Chung, F.R.K.1
-
11
-
-
0001076208
-
Comparison techniques for random walk on finite groups
-
DIACONIS, P. and SALOFF-COSTE, L. (1993). Comparison techniques for random walk on finite groups. Ann. Probab. 21 2131-2156.
-
(1993)
Ann. Probab.
, vol.21
, pp. 2131-2156
-
-
Diaconis, P.1
Saloff-Coste, L.2
-
13
-
-
0000255332
-
Comparison theorems for reversible Markov chains
-
DIACONIS, P. and SALOFF-COSTE, L. (1993). Comparison theorems for reversible Markov chains. Ann. Appl. Probab. 3 696-730.
-
(1993)
Ann. Appl. Probab.
, vol.3
, pp. 696-730
-
-
Diaconis, P.1
Saloff-Coste, L.2
-
14
-
-
0039564762
-
Enumeration and random random walks on finite groups
-
DOU, C. and HILDEBRAND, M. (1996). Enumeration and random random walks on finite groups. Ann. Probab. 24 987-1000.
-
(1996)
Ann. Probab.
, vol.24
, pp. 987-1000
-
-
Dou, C.1
Hildebrand, M.2
-
15
-
-
0000037976
-
On the second eigenvalue and random walks in random d-regular graphs
-
FRIEDMAN, J. (1991). On the second eigenvalue and random walks in random d-regular graphs. Combinatorica 11 331-362.
-
(1991)
Combinatorica
, vol.11
, pp. 331-362
-
-
Friedman, J.1
-
16
-
-
0041147177
-
-
Preprint
-
FRIEDMAN, J., JOUX, A., ROICHMAN, Y., STERN, J. and TILLICH, J. P. (1995). Most regular graphs are quickly r-transitive. Preprint.
-
(1995)
Most Regular Graphs Are Quickly R-Transitive
-
-
Joux, A.1
Roichman, Y.2
Stern, J.3
Tillich, J.P.4
-
17
-
-
21844526142
-
Random walks supported on random points of ℤ/nℤ
-
HILDEBRAND, M. (1994). Random walks supported on random points of ℤ/nℤ. Probab. Theory Related Fields 100 191-203.
-
(1994)
Probab. Theory Related Fields
, vol.100
, pp. 191-203
-
-
Hildebrand, M.1
-
19
-
-
0001375397
-
Discrete Groups, Expanding Graphs and Invariant Measures
-
Birkhäuser, Boston
-
LUBOTZKY, A. (1994). Discrete Groups, Expanding Graphs and Invariant Measures. Progress in Math. 125. Birkhäuser, Boston.
-
(1994)
Progress in Math.
, vol.125
-
-
Lubotzky, A.1
-
20
-
-
0002093056
-
Cayley graphs: Eigenvalues, expanders and random walks
-
To appear
-
LUBOTZKY, A. (1995). Cayley graphs: eigenvalues, expanders and random walks. Surveys in Combinatorics. To appear.
-
(1995)
Surveys in Combinatorics
-
-
Lubotzky, A.1
-
22
-
-
0003288907
-
Some Applications of Modular Forms
-
Cambridge Univ. Press
-
SARNAK, P. (1990). Some Applications of Modular Forms. Cambridge Tracts in Math. 99. Cambridge Univ. Press.
-
(1990)
Cambridge Tracts in Math.
, vol.99
-
-
Sarnak, P.1
|