-
1
-
-
0012097571
-
A universal instability of many-dimensional oscillator systems
-
B. V. Chirikov, "A universal instability of many-dimensional oscillator systems," Phys. Rep. 52, 263-379 (1979).
-
(1979)
Phys. Rep.
, vol.52
, pp. 263-379
-
-
Chirikov, B.V.1
-
2
-
-
0346788422
-
Characterization of chaotic quantum spectra and universality of level fluctuation laws
-
O. Bohigas, M. J. Giannoni, and C. Schmit, "Characterization of chaotic quantum spectra and universality of level fluctuation laws," Phys. Rev. Lett. 52, 1-4 (1984) . See also "Spectral fluctuations of classically chaotic quantum systems," in Quantum Chaos and Statistical Nuclear Physics, edited by T. H. Seligman and H. Nishioka (Springer, Berlin, Heidelberg, New York, 1986), pp. 18-40.
-
(1984)
Phys. Rev. Lett.
, vol.52
, pp. 1-4
-
-
Bohigas, O.1
Giannoni, M.J.2
Schmit, C.3
-
3
-
-
0346788422
-
Spectral fluctuations of classically chaotic quantum systems
-
Springer, Berlin, Heidelberg, New York
-
O. Bohigas, M. J. Giannoni, and C. Schmit, "Characterization of chaotic quantum spectra and universality of level fluctuation laws," Phys. Rev. Lett. 52, 1-4 (1984) . See also "Spectral fluctuations of classically chaotic quantum systems," in Quantum Chaos and Statistical Nuclear Physics, edited by T. H. Seligman and H. Nishioka (Springer, Berlin, Heidelberg, New York, 1986), pp. 18-40.
-
(1986)
Quantum Chaos and Statistical Nuclear Physics
, pp. 18-40
-
-
Seligman, T.H.1
Nishioka, H.2
-
4
-
-
0000582326
-
Quantum spectra and transition from regular to chaotic classical motion
-
T. H. Seligman, J. J. M. Verbaarshot, and M. R. Zirnbauer, "Quantum spectra and transition from regular to chaotic classical motion," Phys. Rev. Lett. 53, 215-217 (1984). See also "Spectral fluctuation properties of Hamiltonian systems: The transition between order and chaos," J. Phys. A 18, 2751-2770 (1985).
-
(1984)
Phys. Rev. Lett.
, vol.53
, pp. 215-217
-
-
Seligman, T.H.1
Verbaarshot, J.J.M.2
Zirnbauer, M.R.3
-
5
-
-
0001087529
-
Spectral fluctuation properties of Hamiltonian systems: The transition between order and chaos
-
T. H. Seligman, J. J. M. Verbaarshot, and M. R. Zirnbauer, "Quantum spectra and transition from regular to chaotic classical motion," Phys. Rev. Lett. 53, 215-217 (1984). See also "Spectral fluctuation properties of Hamiltonian systems: The transition between order and chaos," J. Phys. A 18, 2751-2770 (1985).
-
(1985)
J. Phys. A
, vol.18
, pp. 2751-2770
-
-
-
6
-
-
0002706543
-
Semiclassical mechanics of regular and irregular motion
-
Les Huoches Lectures XXXVI, R. H. Helleman and G. Iooss North-Holland, Amsterdam
-
For a pedagogical paper on quantum chaos, see M. V. Berry, "Semiclassical mechanics of regular and irregular motion," in Chaotic Behavior of Deterministic Systems. Les Huoches Lectures XXXVI, edited by R. H. Helleman and G. Iooss (North-Holland, Amsterdam, 1985), pp. 171-271.
-
(1985)
Chaotic Behavior of Deterministic Systems
, pp. 171-271
-
-
Berry, M.V.1
-
8
-
-
0347190915
-
Postmodern quantum mechanics
-
Eric J. Heller and Steven Tomsovic, "Postmodern quantum mechanics," Phys. Today 46 (7), 38-46 (1993).
-
(1993)
Phys. Today
, vol.46
, Issue.7
, pp. 38-46
-
-
Heller, E.J.1
Tomsovic, S.2
-
9
-
-
33744651701
-
Qualitative properties of eigenfunctions of classically chaotic Hamiltonian systems
-
edited by T. H. Seligman and H. Nishioka Springer, Berlin, Heidelberg, New York, and references therein
-
E. J. Heller, "Qualitative properties of eigenfunctions of classically chaotic Hamiltonian systems," in Quantum Chaos and Statistical Nuclear Physics, edited by T. H. Seligman and H. Nishioka (Springer, Berlin, Heidelberg, New York, 1986), pp. 162-181, and references therein.
-
(1986)
Quantum Chaos and Statistical Nuclear Physics
, pp. 162-181
-
-
Heller, E.J.1
-
10
-
-
85033898208
-
-
note
-
Both the Schrödinger equation for a billiard and the wave equation for a membrane are reduced to the Helmholtz equation when the time-independent part is taken. Nevertheless, to deduce the wave equation for the membrane air, gravity, and damping in the high frequency regime are usually neglected.
-
-
-
-
11
-
-
50849115000
-
-
Addison-Wesley, Reading, MA
-
Richard P. Feynman, Robert B. Leighton, and Matthew Sands, The Feynman Lectures on Physics Mainly Electromagnetism and Matter, Vol. II (Addison-Wesley, Reading, MA, 1964), pp. 12-1.
-
(1964)
The Feynman Lectures on Physics Mainly Electromagnetism and Matter
, vol.2
, pp. 12-21
-
-
Feynman, R.P.1
Leighton, R.B.2
Sands, M.3
-
13
-
-
0001567836
-
Experimental observation of scarred eigenfunctions of chaotic microwave cavities
-
S. Sridhar, "Experimental observation of scarred eigenfunctions of chaotic microwave cavities," Phys. Rev. Lett. 67, 785-788 (1991).
-
(1991)
Phys. Rev. Lett.
, vol.67
, pp. 785-788
-
-
Sridhar, S.1
-
15
-
-
85033876465
-
-
note
-
St. Pauls in U.K. is an example.
-
-
-
-
16
-
-
45549120661
-
Smoothed wave functions of chaotic quantum systems
-
E. B. Bogomolny, "Smoothed wave functions of chaotic quantum systems," Physica D 31, 169-189 (1988).
-
(1988)
Physica D
, vol.31
, pp. 169-189
-
-
Bogomolny, E.B.1
-
17
-
-
0004254722
-
-
Springer-Verlag, New York
-
These authors developed a formula according to which a solution to quantum problems may be written as a sum over all periodic orbits of its classically chaotic counterpart. This formula is exceedingly complicated due to the exponential increase of the number of such orbits as a function of their length. On the other hand, the shortest orbits are few and display some typical features of the problem. There are textbooks on classical and quantum chaos containing discussions of the Selberg-Gutzwiller-Balian periodic orbits sum expression. See, for example, L. E. Reichl, The Transition to Chaos (Springer-Verlag, New York, 1992), pp. 318-381. See also M. C. Gutzwiller, Ref. 5, pp. 282-321.
-
(1992)
The Transition to Chaos
, pp. 318-381
-
-
Reichl, L.E.1
-
18
-
-
85033895658
-
-
Ref. 5, pp. 282-321
-
These authors developed a formula according to which a solution to quantum problems may be written as a sum over all periodic orbits of its classically chaotic counterpart. This formula is exceedingly complicated due to the exponential increase of the number of such orbits as a function of their length. On the other hand, the shortest orbits are few and display some typical features of the problem. There are textbooks on classical and quantum chaos containing discussions of the Selberg-Gutzwiller-Balian periodic orbits sum expression. See, for example, L. E. Reichl, The Transition to Chaos (Springer-Verlag, New York, 1992), pp. 318-381. See also M. C. Gutzwiller, Ref. 5, pp. 282-321.
-
-
-
Gutzwiller, M.C.1
-
19
-
-
0000143075
-
Quasi-Landau spectrum of the chaotic diamagnetic hydrogen atom
-
A. Holle, J. Main, G. Wiebusch, H. Rottke, and K. H. Welge, "Quasi-Landau spectrum of the chaotic diamagnetic hydrogen atom," Phys. Rev. Lett. 61, 161-164 (1988).
-
(1988)
Phys. Rev. Lett.
, vol.61
, pp. 161-164
-
-
Holle, A.1
Main, J.2
Wiebusch, G.3
Rottke, H.4
Welge, K.H.5
-
20
-
-
0001564854
-
Universal and nonuniversal statistical properties of levels and intensities for chaotic Rydberg molecules
-
M. Lombardi and T. H. Seligman. "Universal and nonuniversal statistical properties of levels and intensities for chaotic Rydberg molecules," Phys. Rev. A 47, 3571-3586 (1993).
-
(1993)
Phys. Rev. A
, vol.47
, pp. 3571-3586
-
-
Lombardi, M.1
Seligman, T.H.2
-
21
-
-
0003808753
-
-
Tieto, Clevedon, Avon, England
-
Cyril Isenberg, The Science of Soap Films and Soap Bubbles (Tieto, Clevedon, Avon, England, 1978). This book gives an excellent account of the many properties of soap films and soap bubbles. It also contains an extensive list of references on the subject.
-
(1978)
The Science of Soap Films and Soap Bubbles
-
-
Isenberg, C.1
-
22
-
-
33744629818
-
Demonstrations of normal modes on a bubble membrane
-
D. T. Kagan and L. J. Buchholtz, "Demonstrations of normal modes on a bubble membrane," Am. J. Phys. 58, 376-377 (1991).
-
(1991)
Am. J. Phys.
, vol.58
, pp. 376-377
-
-
Kagan, D.T.1
Buchholtz, L.J.2
-
23
-
-
0040168111
-
Experiments with vibrating soap membranes
-
L. Bergmann, "Experiments with vibrating soap membranes," J. Acoust. Soc. Am. 28 (6), 1043-1047 (1956).
-
(1956)
J. Acoust. Soc. Am.
, vol.28
, Issue.6
, pp. 1043-1047
-
-
Bergmann, L.1
-
25
-
-
33744657415
-
A mechanical resonance apparatus for undergraduate laboratories
-
The generator and mechanical vibrator can be used for other vibrating systems. See, for instance, Christopher C. Jones, "A mechanical resonance apparatus for undergraduate laboratories," Am. J. Phys. 63, 232-236 (1995).
-
(1995)
Am. J. Phys.
, vol.63
, pp. 232-236
-
-
Jones, C.C.1
-
26
-
-
85033885835
-
Why different drums can sound the same
-
22-23 August
-
The possibility to introduce a billiard of any shape easily is the great advantage of the experimental setup which we present. Domains with different shape but the same spectrum may be studied. See, for instance, H. Weidenmüller, "Why different drums can sound the same," Phys. World (22-23 August 1994). Other billiards associated with classically chaotic or integrable billiards may be studied. This is the case of the ellipse billiard, the oval billiard, the triangle billiard (all kinds of triangles), polygonal billiards, etc., and in general, billiards constructed in order to obtain some special feature of classically chaotic systems such as special discrete symmetries.
-
(1994)
Phys. World
-
-
Weidenmüller, H.1
-
27
-
-
0004861156
-
Music and ammonia vapor excite the color pattern of a soap film
-
J. Walker, "Music and ammonia vapor excite the color pattern of a soap film," Sci. Am. 257 (2), 92-95 (1987).
-
(1987)
Sci. Am.
, vol.257
, Issue.2
, pp. 92-95
-
-
Walker, J.1
-
28
-
-
0023481092
-
Possible resonance effect in the distribution of earthquake damage in Mexico City
-
J. Flores, O. Novaro, and T. H. Seligman, "Possible resonance effect in the distribution of earthquake damage in Mexico City," Nature (London) 326, 783-785 (1987).
-
(1987)
Nature (London)
, vol.326
, pp. 783-785
-
-
Flores, J.1
Novaro, O.2
Seligman, T.H.3
-
29
-
-
34447095262
-
Quasilinear ridge structures in water surface waves
-
R. Blümel, I. H. Davidson, W. P. Reinhart, H. Lin, and M. Sharnoff, "Quasilinear ridge structures in water surface waves," Phys. Rev. A 45, 2641-2644 (1992).
-
(1992)
Phys. Rev. A
, vol.45
, pp. 2641-2644
-
-
Blümel, R.1
Davidson, I.H.2
Reinhart, W.P.3
Lin, H.4
Sharnoff, M.5
-
30
-
-
0003954093
-
-
Cambridge U.P., New York
-
G. M. Zaslavsky, R. Z. Sagdeev, D. A. Usikov, and A. A. Chernikov, Weak Chaos and Quasi-Regular Patterns (Cambridge U.P., New York, 1991), pp. 170-187.
-
(1991)
Weak Chaos and Quasi-regular Patterns
, pp. 170-187
-
-
Zaslavsky, G.M.1
Sagdeev, R.Z.2
Usikov, D.A.3
Chernikov, A.A.4
-
31
-
-
0002108245
-
Parametric instabilities
-
edited by G. Martínez-Meckler and T. H. Seligman World Scientific, Singapore
-
S. Fauve, "Parametric instabilities," in Dynamics of Nonlinear and Disordered Systems, edited by G. Martínez-Meckler and T. H. Seligman (World Scientific, Singapore, 1995), pp. 67-115.
-
(1995)
Dynamics of Nonlinear and Disordered Systems
, pp. 67-115
-
-
Fauve, S.1
-
32
-
-
0010312352
-
Transition to parametric wave patterns in a vertically oscillated granular layer
-
F. Melo, P. Umbanhowar, and H. L. Swinney, "Transition to parametric wave patterns in a vertically oscillated granular layer," Phys. Rev. Lett. 72, 172-175 (1994).
-
(1994)
Phys. Rev. Lett.
, vol.72
, pp. 172-175
-
-
Melo, F.1
Umbanhowar, P.2
Swinney, H.L.3
-
33
-
-
5844354634
-
Experimental determination of billiard wave functions
-
J. Stein and H.-J. Stöckmann, "Experimental determination of billiard wave functions," Phys. Rev. Lett. 68, 2867-2870 (1988).
-
(1988)
Phys. Rev. Lett.
, vol.68
, pp. 2867-2870
-
-
Stein, J.1
Stöckmann, H.-J.2
-
34
-
-
0030492698
-
A simple model for Faraday waves
-
J. Bechhoefer and B. Johnson, "A simple model for Faraday waves," Am. J. Phys. 64, 1482-1487 (1996).
-
(1996)
Am. J. Phys.
, vol.64
, pp. 1482-1487
-
-
Bechhoefer, J.1
Johnson, B.2
|