-
1
-
-
0003706460
-
-
Philadelphia, PA: Society for Industrial and Applied Mathematics. ISBN 0-89871-345-5
-
ANDERSON, E., BAI, Z., BISCHOF, C. H., DEMMEL, J. W., DONGARRA, J. J., Du CROZ, J. J., GREENBAUM, A., HAMMARLING, S. J., MCKENNEY, A., OSTROUCHOV, S., & SORENSEN, D. C. 1995 LAPACK Users' Guide, Release 2.0, second edition, Philadelphia, PA: Society for Industrial and Applied Mathematics. ISBN 0-89871-345-5.
-
(1995)
LAPACK Users' Guide, Release 2.0, Second Edition
-
-
Anderson, E.1
Bai, Z.2
Bischof, C.H.3
Demmel, J.W.4
Dongarra, J.J.5
Du Croz, J.J.6
Greenbaum, A.7
Hammarling, S.J.8
Mckenney, A.9
Ostrouchov, S.10
Sorensen, D.C.11
-
2
-
-
0000015959
-
Solving sparse linear systems with sparse backward error
-
ARIOLI, M., DEMMEL, J. W., & DUFF, I. S. 1989 Solving sparse linear systems with sparse backward error. SIAM J. Matrix Anal. Appl. 10, 165-190.
-
(1989)
SIAM J. Matrix Anal. Appl.
, vol.10
, pp. 165-190
-
-
Arioli, M.1
Demmel, J.W.2
Duff, I.S.3
-
3
-
-
84966228742
-
Some stable methods for calculating inertia and solving symmetric linear systems
-
BUNCH, J. R., & KAUFMAN, L. 1977 Some stable methods for calculating inertia and solving symmetric linear systems. Math. Comput. 31, 163-179.
-
(1977)
Math. Comput.
, vol.31
, pp. 163-179
-
-
Bunch, J.R.1
Kaufman, L.2
-
4
-
-
0012093737
-
Iterative refinement enhances the stability of QR factorization methods for solving linear equations
-
HIGHAM, N. J. 1991 Iterative refinement enhances the stability of QR factorization methods for solving linear equations. BIT 31, 447-468.
-
(1991)
BIT
, vol.31
, pp. 447-468
-
-
Higham, N.J.1
-
5
-
-
0003492388
-
The test matrix toolbox for MATLAB (version 3.0)
-
Manchester Centre for Computational Mathematics, Manchester, UK, September 1995
-
HIGHAM, N. J. 1995 The Test Matrix Toolbox for MATLAB (version 3.0). Numerical Analysis Report No 276, Manchester Centre for Computational Mathematics, Manchester, UK, September 1995.
-
(1995)
Numerical Analysis Report No 276
-
-
Higham, N.J.1
-
6
-
-
0036457301
-
-
Philadelphia, PA: Society for Industrial and Applied Mathematics. ISBN 0-89871-355-2
-
HlGHAM, N. J. 1996 Accuracy and Stability of Numerical Algorithms. Philadelphia, PA: Society for Industrial and Applied Mathematics. ISBN 0-89871-355-2.
-
(1996)
Accuracy and Stability of Numerical Algorithms
-
-
Hlgham, N.J.1
-
7
-
-
0031538118
-
Stability of the diagonal pivoting method with partial pivoting
-
HIGHAM, N. J. 1997 Stability of the diagonal pivoting method with partial pivoting. SIAM J. Matrix Anal. Appl. 18, 52-65.
-
(1997)
SIAM J. Matrix Anal. Appl.
, vol.18
, pp. 52-65
-
-
Higham, N.J.1
-
8
-
-
0002694394
-
Componentwise error analysis for stationary iterative methods
-
(C. D. Meyer and R. J. Plemmons, eds), of IMA Volumes in Mathematics and its Applications. New York: Springer
-
HIGHAM, N. J., & KNIGHT, P. A. 1993 Componentwise error analysis for stationary iterative methods. Linear Algebra, Markov Chains, and Queueing Models (C. D. Meyer and R. J. Plemmons, eds), volume 48 of IMA Volumes in Mathematics and its Applications. New York: Springer, pp 29-46.
-
(1993)
Linear Algebra, Markov Chains, and Queueing Models
, vol.48
, pp. 29-46
-
-
Higham, N.J.1
Knight, P.A.2
-
9
-
-
0000543498
-
Iterative refinement implies numerical stability
-
JANKOWSKI, M., & WOŹNIAKOWSKI, H. 1977 Iterative refinement implies numerical stability. BIT 17, 303-311.
-
(1977)
BIT
, vol.17
, pp. 303-311
-
-
Jankowski, M.1
Woźniakowski, H.2
-
10
-
-
85047010597
-
-
Manuscript. Contained in the document with URL ps, June 1996
-
KAHAN, W., & IVORY, M. Y. 1996 Roundoff degrades an idealized cantilever. Manuscript. Contained in the document with URL http://http.cs.berkeley.edu/wkahan/ ieee754status/baleful .ps, June 1996.
-
(1996)
Roundoff Degrades An Idealized Cantilever
-
-
Kahan, W.1
Ivory, M.Y.2
-
11
-
-
0003490527
-
-
Oxford: Oxford University Press. ISBN 0-19-853772-7
-
METCALF, M., & REID, J. K. 1990 Fortran 90 Explained. Oxford: Oxford University Press. ISBN 0-19-853772-7.
-
(1990)
Fortran 90 Explained
-
-
Metcalf, M.1
Reid, J.K.2
-
12
-
-
0001467517
-
Iterative refinement in floating point
-
MOLER, C. B. 1967 Iterative refinement in floating point. J. Assoc. Comput. Mach. 14, 316-321.
-
(1967)
J. Assoc. Comput. Mach.
, vol.14
, pp. 316-321
-
-
Moler, C.B.1
-
13
-
-
33845220799
-
Compatibility of approximate solution of linear equations with given error bounds for coefficients and right-hand sides
-
OETTLI, W., & PRAGER, W. 1964 Compatibility of approximate solution of linear equations with given error bounds for coefficients and right-hand sides. Numer. Math. 6, 405-409.
-
(1964)
Numer. Math.
, vol.6
, pp. 405-409
-
-
Oettli, W.1
Prager, W.2
-
14
-
-
84966248432
-
Iterative refinement implies numerical stability for Gaussian elimination
-
SKEEL, R. D. 1980 Iterative refinement implies numerical stability for Gaussian elimination. Math. Comput. 35, 817-832.
-
(1980)
Math. Comput.
, vol.35
, pp. 817-832
-
-
Skeel, R.D.1
-
16
-
-
0002090018
-
Condition numbers and equilibration of matrices
-
VAN DER SLUIS, A. 1969 Condition numbers and equilibration of matrices. Numer. Math. 14, 14-23.
-
(1969)
Numer. Math.
, vol.14
, pp. 14-23
-
-
Van Der Sluis, A.1
-
17
-
-
0012093754
-
-
Report MA/17/1024, Mathematics Division, Department of Scientific and Industrial Research, National Physical Laboratory, Teddington, UK, April 1948
-
WILKINSON, J. H. 1948 Progress report on the Automatic Computing Engine. Report MA/17/1024, Mathematics Division, Department of Scientific and Industrial Research, National Physical Laboratory, Teddington, UK, April 1948.
-
(1948)
Progress Report on the Automatic Computing Engine
-
-
Wilkinson, J.H.1
-
18
-
-
0003494064
-
-
London: Her Majesty's Stationery Office. Also published by Prentice-Hall, Englewood Cliffs, NJ, USA. Reprinted by Dover, New York, 1994. ISBN 0-486-67999-3
-
WILKINSON, J. H. 1963 Rounding Errors in Algebraic Processes (Notes on Applied Science No 32). London: Her Majesty's Stationery Office. Also published by Prentice-Hall, Englewood Cliffs, NJ, USA. Reprinted by Dover, New York, 1994. ISBN 0-486-67999-3.
-
(1963)
Rounding Errors in Algebraic Processes (Notes on Applied Science No 32)
-
-
Wilkinson, J.H.1
|