-
1
-
-
0010070960
-
The choice of the degree of a polynomial regression as a multiple decision problem
-
ANDERSON, T. W. (1962). The choice of the degree of a polynomial regression as a multiple decision problem. Ann. Math. Statist. 33 255-265.
-
(1962)
Ann. Math. Statist.
, vol.33
, pp. 255-265
-
-
Anderson, T.W.1
-
2
-
-
21844496670
-
Discrimination designs for polynomials regression on compact intervals
-
DETTE, H. (1994). Discrimination designs for polynomials regression on compact intervals. Ann. Statist. 22 890-903.
-
(1994)
Ann. Statist.
, vol.22
, pp. 890-903
-
-
Dette, H.1
-
3
-
-
21844516944
-
Optimal designs for identifying the degree of a polynomial regression
-
DETTE, H. (1995). Optimal designs for identifying the degree of a polynomial regression. Ann. Statist. 23 1248-1267.
-
(1995)
Ann. Statist.
, vol.23
, pp. 1248-1267
-
-
Dette, H.1
-
5
-
-
0002021126
-
Optimal designs for polynomial regression when the degree is not known
-
DETTE, H. and STUDDEN, W. J. (1995). Optimal designs for polynomial regression when the degree is not known. Statist. Sinica 5 459-473.
-
(1995)
Statist. Sinica
, vol.5
, pp. 459-473
-
-
Dette, H.1
Studden, W.J.2
-
7
-
-
0010442289
-
Optimum multivariate designs
-
Univ. California Press, Berkeley
-
FARREL, H. R., KIEFER, J. and WALBRAN, J. (1967). Optimum multivariate designs. Proc. Fifth Berkeley Symp. Math. Statist. Probab. 1 113-138. Univ. California Press, Berkeley.
-
(1967)
Proc. Fifth Berkeley Symp. Math. Statist. Probab.
, vol.1
, pp. 113-138
-
-
Farrel, H.R.1
Kiefer, J.2
Walbran, J.3
-
8
-
-
0000981128
-
General equivalence theory for optimum designs (approximate theory)
-
KIEFER, J. (1974). General equivalence theory for optimum designs (approximate theory). Ann. Statist. 2 849-879.
-
(1974)
Ann. Statist.
, vol.2
, pp. 849-879
-
-
Kiefer, J.1
-
9
-
-
0000823651
-
Optimal designs for trigonometric and polynomial regression using canonical moments
-
LAU, T. S. and STUDDEN, W. J. (1985). Optimal designs for trigonometric and polynomial regression using canonical moments. Ann. Statist. 13 383-393.
-
(1985)
Ann. Statist.
, vol.13
, pp. 383-393
-
-
Lau, T.S.1
Studden, W.J.2
-
10
-
-
0001097402
-
s-optimal designs for multivariate polynomial regression on the q-cube
-
s-optimal designs for multivariate polynomial regression on the q-cube. Ann. Statist. 16 1225-1240.
-
(1988)
Ann. Statist.
, vol.16
, pp. 1225-1240
-
-
Lim, Y.B.1
Studden, J.2
-
12
-
-
0041059656
-
Optimum experimental design for a regression on a hypercube - A generalization of Hoel's result
-
RAFAJLOWICZ, E. and MYSZKA, W. (1988). Optimum experimental design for a regression on a hypercube - a generalization of Hoel's result. Ann. Inst. Statist. Math. 40 821-828.
-
(1988)
Ann. Inst. Statist. Math.
, vol.40
, pp. 821-828
-
-
Rafajlowicz, E.1
Myszka, W.2
-
13
-
-
0039280781
-
When product type optimal design is optimal? brief survey and new results
-
RAFAJLOWICZ, E. and MYSZKA, W. (1992). When product type optimal design is optimal? Brief survey and new results. Metrika 39 321-333.
-
(1992)
Metrika
, vol.39
, pp. 321-333
-
-
Rafajlowicz, E.1
Myszka, W.2
-
15
-
-
0039608909
-
Principal representations and canonical moment sequences for distributions on an interval
-
SKIBINSKY, M. (1986). Principal representations and canonical moment sequences for distributions on an interval. J. Math. Anal. Appl. 5 693-701.
-
(1986)
J. Math. Anal. Appl.
, vol.5
, pp. 693-701
-
-
Skibinsky, M.1
-
16
-
-
0039608905
-
Good designs for testing the degree of a polynomial mean
-
SPRUILL, M. C. (1990). Good designs for testing the degree of a polynomial mean. Sankhyā Ser. B 52 67-74.
-
(1990)
Sankhyā Ser. B
, vol.52
, pp. 67-74
-
-
Spruill, M.C.1
-
17
-
-
0000135813
-
s-optimal designs for polynomial regression using continued fractions
-
s-optimal designs for polynomial regression using continued fractions. Ann. Statist. 8 1132-1141.
-
(1980)
Ann. Statist.
, vol.8
, pp. 1132-1141
-
-
Studden, W.J.1
-
18
-
-
0010174331
-
G-optimal designs for multi-factor experiments
-
WONG, W. K. (1994). G-optimal designs for multi-factor experiments. J. Statist. Plann. Inference 40 127-133.
-
(1994)
J. Statist. Plann. Inference
, vol.40
, pp. 127-133
-
-
Wong, W.K.1
|