메뉴 건너뛰기




Volumn 33, Issue 6, 1996, Pages 2488-2509

Error estimates for finite difference methods for a wide-angle "parabolic" equation

Author keywords

Finite difference error estimates; Interface problems; Underwater acoustics; Wide angle "parabolic" equation

Indexed keywords


EID: 0040580194     PISSN: 00361429     EISSN: None     Source Type: Journal    
DOI: 10.1137/S0036142994266352     Document Type: Article
Times cited : (11)

References (32)
  • 1
    • 84966254483 scopus 로고
    • Finite difference discretizations of some initial and boundary value problems with interface
    • G. D. AKRIVIS AND V. A. DOUGALIS, Finite difference discretizations of some initial and boundary value problems with interface, Math. Comp., 56 (1991), pp. 505-522.
    • (1991) Math. Comp. , vol.56 , pp. 505-522
    • Akrivis, G.D.1    Dougalis, V.A.2
  • 2
    • 0040435632 scopus 로고
    • On a conservative finite difference method for the third-order, wide-angle parabolic equation
    • North-Holland, Amsterdam
    • _, On a conservative finite difference method for the third-order, wide-angle parabolic equation, in Computational Acoustics: Acoustic Propagation 2, D. Lee, R. Vichnevetsky, and A. R. Robinson, eds., North-Holland, Amsterdam, 1993, pp. 209-220.
    • (1993) Computational Acoustics: Acoustic Propagation 2 , pp. 209-220
    • Lee, D.1    Vichnevetsky, R.2    Robinson, A.R.3
  • 3
    • 0039896351 scopus 로고
    • On Galerkin methods for the wide-angle parabolic equation
    • G. D. AKRIVIS, V. A. DOUGALIS, AND N. A. KAMPANIS, On Galerkin methods for the wide-angle parabolic equation, J. Comput. Acoustics, 2 (1994), pp. 99-112.
    • (1994) J. Comput. Acoustics , vol.2 , pp. 99-112
    • Akrivis, G.D.1    Dougalis, V.A.2    Kampanis, N.A.3
  • 4
    • 0003344387 scopus 로고
    • Error estimates for finite element methods for a wide-angle parabolic equation
    • _, Error estimates for finite element methods for a wide-angle parabolic equation, Appl. Numer. Math., 16 (1994), pp. 81-100.
    • (1994) Appl. Numer. Math. , vol.16 , pp. 81-100
  • 5
    • 0040529123 scopus 로고
    • Superconvergence of a finite element approximation to the solution of a Sobolev equation in a single space variable
    • D. N. ARNOLD, J. DOUGLAS JR., AND V. THOMÉE, Superconvergence of a finite element approximation to the solution of a Sobolev equation in a single space variable, Math. Comp., 36 (1981), pp. 53-63.
    • (1981) Math. Comp. , vol.36 , pp. 53-63
    • Arnold, D.N.1    Douglas Jr., J.2    Thomée, V.3
  • 6
    • 0000069641 scopus 로고
    • Parabolic wave equation approximations in heterogeneous media
    • A. BAMBERGER, B. ENGQUIST, L. HALPERN, AND P. JOLY, Parabolic wave equation approximations in heterogeneous media, SIAM J. Appl. Math., 48 (1988), pp. 99-128.
    • (1988) SIAM J. Appl. Math. , vol.48 , pp. 99-128
    • Bamberger, A.1    Engquist, B.2    Halpern, L.3    Joly, P.4
  • 7
    • 0000069637 scopus 로고
    • Higher order paraxial wave equation approximations in heterogeneous media
    • _, Higher order paraxial wave equation approximations in heterogeneous media, SIAM J. Appl. Math., 48 (1988), pp. 129-154.
    • (1988) SIAM J. Appl. Math. , vol.48 , pp. 129-154
  • 8
    • 0040398633 scopus 로고
    • IFD: Wide Angle Capability
    • Naval Underwater Systems Center, New London Laboratory, New London, CT
    • G. BOTSEAS, D. LEE, AND K. E. GILBERT, IFD: Wide Angle Capability, Technical Report 6905, Naval Underwater Systems Center, New London Laboratory, New London, CT, 1983.
    • (1983) Technical Report 6905 , vol.6905
    • Botseas, G.1    Lee, D.2    Gilbert, K.E.3
  • 9
    • 0012284020 scopus 로고
    • FOR3D: A Computer Model for Solving the LSS Three-Dimensional, Wide Angle Wave Equation
    • Naval Underwater Systems Center, New London Laboratory, New London, CT
    • G. BOTSEAS, D. LEE, AND D. KING, FOR3D: A Computer Model for Solving the LSS Three-Dimensional, Wide Angle Wave Equation, Technical Report 7943, Naval Underwater Systems Center, New London Laboratory, New London, CT, 1987.
    • (1987) Technical Report 7943 , vol.7943
    • Botseas, G.1    Lee, D.2    King, D.3
  • 10
    • 0039304078 scopus 로고
    • Technical Note 12, Naval Ocean Research and Development Activity, NSTL Station, Mississippi
    • H. K. BROCK, The AESD Parabolic Equation Model, Technical Note 12, Naval Ocean Research and Development Activity, NSTL Station, Mississippi, 1978.
    • (1978) The AESD Parabolic Equation Model
    • Brock, H.K.1
  • 12
    • 0001418311 scopus 로고
    • The time-domain solution of the wide angle parabolic equation including the effects of sediment dispersion
    • M. D. COLLINS, The time-domain solution of the wide angle parabolic equation including the effects of sediment dispersion, J. Acoust. Soc. Amer., 84 (1988), pp. 2114-2125.
    • (1988) J. Acoust. Soc. Amer. , vol.84 , pp. 2114-2125
    • Collins, M.D.1
  • 13
    • 0001418867 scopus 로고
    • Applications and time-domain solution of higher order parabolic equations in underwater acoustics
    • _, Applications and time-domain solution of higher order parabolic equations in underwater acoustics, J. Acoust. Soc. Amer., 86 (1989), pp. 1097-1102.
    • (1989) J. Acoust. Soc. Amer. , vol.86 , pp. 1097-1102
  • 14
    • 0039251112 scopus 로고
    • Three-dimensional sound propagation in shallow water including the effects of rough surfaces
    • D. Lee, A. Cakmak, and R. Vichnevetsky, eds., North-Holland, Amsterdam
    • M. D. COLLINS AND S. A. CHIN-BING, Three-dimensional sound propagation in shallow water including the effects of rough surfaces, in Computational Acoustics: Seismo-Ocean Acoustics and Modeling 3, D. Lee, A. Cakmak, and R. Vichnevetsky, eds., North-Holland, Amsterdam, 1990, pp. 247-259.
    • (1990) Computational Acoustics: Seismo-Ocean Acoustics and Modeling 3 , pp. 247-259
    • Collins, M.D.1    Chin-Bing, S.A.2
  • 15
    • 85033737932 scopus 로고
    • Technical Note 143, Naval Ocean Research and Development Activity, NSTL Station, Mississippi
    • J. A. DAVIS, D. WHITE, AND R. C. CANAVAGH, NORDA Parabolic Equation Workshop 1981, Technical Note 143, Naval Ocean Research and Development Activity, NSTL Station, Mississippi, 1982.
    • (1982) NORDA Parabolic Equation Workshop 1981
    • Davis, J.A.1    White, D.2    Canavagh, R.C.3
  • 16
    • 0021638831 scopus 로고
    • The rational approximation to the acoustic wave equation with bottom interaction
    • R. R. GREENE, The rational approximation to the acoustic wave equation with bottom interaction, J. Acoust. Soc. Amer, 76 (1984), pp. 1764-1773.
    • (1984) J. Acoust. Soc. Amer , vol.76 , pp. 1764-1773
    • Greene, R.R.1
  • 17
    • 0024102561 scopus 로고
    • Wide-angle one-way wave equations
    • L. HALPERN AND L. N. TREFETHEN, Wide-angle one-way wave equations, J. Acoust. Soc. Amer., 84 (1988), pp. 1397-1404.
    • (1988) J. Acoust. Soc. Amer. , vol.84 , pp. 1397-1404
    • Halpern, L.1    Trefethen, L.N.2
  • 18
    • 84955046485 scopus 로고
    • The Use of the Parabolic Equation Method in Sound Propagation Modelling
    • North Atlantic Treaty Organization, SACLANT ASW Research Centre, La Spezia, Italy
    • F. B. JENSEN AND H. KROL, The Use of the Parabolic Equation Method in Sound Propagation Modelling, SACLANTCEN Memorandum 72, North Atlantic Treaty Organization, SACLANT ASW Research Centre, La Spezia, Italy, 1975.
    • (1975) SACLANTCEN Memorandum 72
    • Jensen, F.B.1    Krol, H.2
  • 20
    • 0039987120 scopus 로고
    • General boundary value problems for differential equations of Sobolev type
    • J. E. LAGNESE, General boundary value problems for differential equations of Sobolev type, SIAM J. Math. Anal., 3 (1972), pp. 105-119.
    • (1972) SIAM J. Math. Anal. , vol.3 , pp. 105-119
    • Lagnese, J.E.1
  • 21
    • 0023533509 scopus 로고
    • Ocean acoustic propagation by finite difference methods
    • D. LEE AND S. T. MCDANIEL, Ocean acoustic propagation by finite difference methods, Comput. Math. Appl., 14 (1987), pp. 305-423.
    • (1987) Comput. Math. Appl. , vol.14 , pp. 305-423
    • Lee, D.1    Mcdaniel, S.T.2
  • 22
    • 0012281097 scopus 로고
    • An efficient method for solving the three-dimensional wide angle wave equation
    • D. Lee, R. L. Sternberg, and M. H. Schultz, eds., North-Holland, Amsterdam
    • D. LEE, Y. SAAD, AND M. H. SCHULTZ, An efficient method for solving the three-dimensional wide angle wave equation, in Computational Acoustics: Wave Propagation, D. Lee, R. L. Sternberg, and M. H. Schultz, eds., North-Holland, Amsterdam, 1988, pp. 75-89.
    • (1988) Computational Acoustics: Wave Propagation , pp. 75-89
    • Lee, D.1    Saad, Y.2    Schultz, M.H.3
  • 23
    • 0021465199 scopus 로고
    • Applications of energy methods to finite-difference solutions of the parabolic wave equation
    • S. T. MCDANIEL, Applications of energy methods to finite-difference solutions of the parabolic wave equation, Comput. Math. Appl., 11 (1985), pp. 823-829.
    • (1985) Comput. Math. Appl. , vol.11 , pp. 823-829
    • Mcdaniel, S.T.1
  • 24
    • 0020116515 scopus 로고
    • A finite difference treatment of interface conditions for the parabolic wave equation: Horizontal interface
    • S. T. MCDANIEL AND D. LEE, A finite difference treatment of interface conditions for the parabolic wave equation: Horizontal interface, J. Acoust. Soc. Amer., 71 (1982), pp. 855-858.
    • (1982) J. Acoust. Soc. Amer. , vol.71 , pp. 855-858
    • Mcdaniel, S.T.1    Lee, D.2
  • 25
    • 0021872634 scopus 로고
    • A wide-angle three-dimensional parabolic wave equation
    • W. L. SIEGMANN, G. A. KRIEGSMANN, AND D. LEE, A wide-angle three-dimensional parabolic wave equation, J. Acoust, Soc. Amer., 78 (1985), pp. 659-664.
    • (1985) J. Acoust, Soc. Amer. , vol.78 , pp. 659-664
    • Siegmann, W.L.1    Kriegsmann, G.A.2    Lee, D.3
  • 26
    • 0021467687 scopus 로고
    • Analysis of an implicit finite-difference scheme for a third-order partial differential equation in three dimensions
    • D. F. ST. MARY, Analysis of an implicit finite-difference scheme for a third-order partial differential equation in three dimensions, Comput. Math. Appl., 11 (1985), pp. 873-885.
    • (1985) Comput. Math. Appl. , vol.11 , pp. 873-885
    • St. Mary, D.F.1
  • 27
    • 1542742454 scopus 로고
    • Analysis of an implicit finite difference solution to an underwater wave propagation problem
    • D. F. ST. MARY AND D. LEE, Analysis of an implicit finite difference solution to an underwater wave propagation problem, J. Comput. Phys., 57 (1985), pp. 378-390.
    • (1985) J. Comput. Phys. , vol.57 , pp. 378-390
    • St. Mary, D.F.1    Lee, D.2
  • 28
    • 0039806143 scopus 로고
    • Accurate computation of the wide angle wave equation
    • North-Holland, Amsterdam
    • _, Accurate computation of the wide angle wave equation, in Computational Acoustics: Wave Propagation, D. Lee, R. L. Sternberg, and M. H. Schultz, eds., North-Holland, Amsterdam, 1988, pp. 409-422.
    • (1988) Computational Acoustics: Wave Propagation , pp. 409-422
    • Lee, D.1    Sternberg, R.L.2    Schultz, M.H.3
  • 29
    • 0000978807 scopus 로고
    • The parabolic approximation method
    • Wave Propagation and Underwater Acoustics, J. B. Keller and J. S. Papadakis, eds., Springer-Verlag, Berlin
    • F. D. TAPPERT, The parabolic approximation method, Lecture Notes in Physics 70, in Wave Propagation and Underwater Acoustics, J. B. Keller and J. S. Papadakis, eds., Springer-Verlag, Berlin, 1977, pp. 224-287.
    • (1977) Lecture Notes in Physics 70 , pp. 224-287
    • Tappert, F.D.1
  • 31
    • 0020881437 scopus 로고
    • A wide angle split-step algorithm for the parabolic equation
    • D. J. THOMSON AND N. R. CHAPMAN, A wide angle split-step algorithm for the parabolic equation, J. Acoust. Soc. Amer., 74 (1983), pp. 1848-1854.
    • (1983) J. Acoust. Soc. Amer. , vol.74 , pp. 1848-1854
    • Thomson, D.J.1    Chapman, N.R.2
  • 32
    • 0003823722 scopus 로고
    • Scattering theory for the D'Alembert equation in exterior domains
    • Springer-Verlag, Berlin
    • C. H. WILCOX, Scattering theory for the D'Alembert equation in exterior domains, Lecture Notes in Mathematics 442, Springer-Verlag, Berlin, 1975.
    • (1975) Lecture Notes in Mathematics 442
    • Wilcox, C.H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.