메뉴 건너뛰기




Volumn 45, Issue 1, 1996, Pages 177-204

The space of properly embedded minimal surfaces with finite total curvature

Author keywords

[No Author keywords available]

Indexed keywords


EID: 0040240148     PISSN: 00222518     EISSN: None     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (40)

References (31)
  • 1
    • 0010673967 scopus 로고
    • The index theorem for classical minimal surfaces
    • R. BOHME & A. J. TROMBA. The index theorem for classical minimal surfaces, Ann. of Math. 113 (1981) 447-499.
    • (1981) Ann. of Math. , vol.113 , pp. 447-499
    • Bohme, R.1    Tromba, A.J.2
  • 2
    • 0000755701 scopus 로고
    • The space of minimal embeddings of a surface into a three dimensional manifold of positive Ricci curvature
    • H. CHOI & R. SCHOEN. The space of minimal embeddings of a surface into a three dimensional manifold of positive Ricci curvature. Invent. Math. 81 (1985) 387-394.
    • (1985) Invent. Math. , vol.81 , pp. 387-394
    • Choi, H.1    Schoen, R.2
  • 4
    • 51649160753 scopus 로고
    • 3 of genus one and three embedded ends
    • 3 of genus one and three embedded ends, Bull. Soc. Bras. Mat. 15 (1984) 47-54.
    • (1984) Bull. Soc. Bras. Mat. , vol.15 , pp. 47-54
    • Costa, C.1
  • 7
    • 0000362154 scopus 로고
    • On complete minimal surfaces with finite morse index in three manifolds
    • D. FISCHER-COLBRIE. On complete minimal surfaces with finite Morse index in three manifolds, Invent. Math. 82 (1985) 121-132.
    • (1985) Invent. Math. , vol.82 , pp. 121-132
    • Fischer-Colbrie, D.1
  • 10
    • 0001917271 scopus 로고
    • Embedded minimal surfaces of finite topology
    • D. HOFFMAN & W. H. MEEKS III. Embedded minimal surfaces of finite topology, Ann. Math. 131 (1990) 207-211.
    • (1990) Ann. Math. , vol.131 , pp. 207-211
    • Hoffman, D.1    Meeks W.H. III2
  • 11
    • 49049129087 scopus 로고
    • The topology of complete minimal surfaces of finite total Gaussian curvature
    • L. JORGE & W. H. MEEKS III. The topology of complete minimal surfaces of finite total Gaussian curvature, Topology 2 (1983) 203-221.
    • (1983) Topology , vol.2 , pp. 203-221
    • Jorge, L.1    Meeks W.H. III2
  • 14
    • 0000962137 scopus 로고
    • A maximum principle at infinity for minimal surfaces and applications
    • R. LANGEVIN & H. ROSENBERG. A maximum principle at infinity for minimal surfaces and applications, Duke Math. J. 57 (1988) 819-828
    • (1988) Duke Math. J. , vol.57 , pp. 819-828
    • Langevin, R.1    Rosenberg, H.2
  • 15
    • 84972500259 scopus 로고
    • On embedded complete minimal surfaces of genus zero
    • F. LÓPEZ & A. ROS. On embedded complete minimal surfaces of genus zero, J. Differential Geometry 33 (1991) 293-300.
    • (1991) J. Differential Geometry , vol.33 , pp. 293-300
    • López, F.1    Ros, A.2
  • 17
    • 51249178158 scopus 로고
    • The maximum principle at infinity for minimal surfaces in flat three manifolds
    • W. H. MEEKS III & H. ROSENBERG. The maximum principle at infinity for minimal surfaces in flat three manifolds, Comm. Math. Helv. 65, 2 (1990) 255-270.
    • (1990) Comm. Math. Helv. , vol.65 , Issue.2 , pp. 255-270
    • Meeks W.H. III1    Rosenberg, H.2
  • 19
    • 0000466791 scopus 로고
    • Schrödinger operators associated to a holomorphic map
    • Proceedings Conference on Global Differential Geometry and Global Analysis, Berlin
    • S. MONTIEL & A. ROS. Schrödinger operators associated to a holomorphic map, Proceedings Conference on Global Differential Geometry and Global Analysis, Berlin, 1990, Lecture Notes in Math. 1481 147-174.
    • (1990) Lecture Notes in Math. , vol.1481 , pp. 147-174
    • Montiel, S.1    Ros, A.2
  • 20
    • 0039944001 scopus 로고
    • Morse index on complete minimal surfaces
    • World Scientific Publishing Co.
    • S. NAYATANI. Morse index on complete minimal surfaces, The Problem of Plateau, World Scientific Publishing Co. (1992) 181-189.
    • (1992) The Problem of Plateau , pp. 181-189
    • Nayatani, S.1
  • 22
    • 0013551836 scopus 로고
    • Some uniqueness and nonexistence theorems for embedded minimal surfaces
    • J. PÉREZ & A. ROS. Some uniqueness and nonexistence theorems for embedded minimal surfaces, Math. Ann. 295(3) (1993) 513-525.
    • (1993) Math. Ann. , vol.295 , Issue.3 , pp. 513-525
    • Pérez, J.1    Ros, A.2
  • 24
    • 0001414959 scopus 로고
    • Compactness of space of properly embedded minimal surfaces with finite total curvature
    • A. ROS. Compactness of space of properly embedded minimal surfaces with finite total curvature, Indiana Univ. Math. J. 44 (1995) 139-152.
    • (1995) Indiana Univ. Math. J. , vol.44 , pp. 139-152
    • Ros, A.1
  • 25
    • 84972545489 scopus 로고
    • Uniqueness, symmetry and embeddedness of minimal surfaces
    • R. SCHOEN. Uniqueness, Symmetry and embeddedness of minimal surfaces, J. Differential Geometry 18 (1983) 701-809.
    • (1983) J. Differential Geometry , vol.18 , pp. 701-809
    • Schoen, R.1
  • 27
    • 0001042829 scopus 로고
    • Extreme curves bound embedded minimal surfaces of the type of the disc
    • F. TOMI & A. J. TROMBA. Extreme curves bound embedded minimal surfaces of the type of the disc, Math. Z. 158 (1978) 137-145.
    • (1978) Math. Z. , vol.158 , pp. 137-145
    • Tomi, F.1    Tromba, A.J.2
  • 29
    • 0001223567 scopus 로고
    • Curvature estimates and compactness theorems in 3-manifolds for surfaces that are stationary for parametric elliptic functionals
    • B. WHITE. Curvature estimates and compactness theorems in 3-manifolds for surfaces that are stationary for parametric elliptic functionals, Invent. Math. 88 (1987) 243-256.
    • (1987) Invent. Math. , vol.88 , pp. 243-256
    • White, B.1
  • 30
    • 0009914838 scopus 로고
    • The space of m-dimensional surfaces that are stationary for a parametric elliptic functional
    • B. WHITE. The space of m-dimensional surfaces that are stationary for a parametric elliptic functional, Indiana Univ. Math. J. 36 (1987) 567-603.
    • (1987) Indiana Univ. Math. J. , vol.36 , pp. 567-603
    • White, B.1
  • 31
    • 0039351671 scopus 로고
    • The space of minimal submanifolds for varying Riemannian metrics
    • B. WHITE. The space of minimal submanifolds for varying Riemannian metrics, Indiana Univ. Math. J. 40 (1991) 161-200.
    • (1991) Indiana Univ. Math. J. , vol.40 , pp. 161-200
    • White, B.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.