-
1
-
-
36149032848
-
On the characterization of Moutard transformations
-
[1] Athorne, C., On the characterization of Moutard transformations. Inverse Problems 9 (1993), 217–232.
-
(1993)
Inverse Problems
, vol.9
, pp. 217-232
-
-
Athorne, C.1
-
2
-
-
0002056823
-
Sopra alcune nuove classi di superficie e di sistemi tripli ortogonali
-
[2] Bianchi, L., Sopra alcune nuove classi di superficie e di sistemi tripli ortogonali. Ann. Mat. 18:2 (1890), 301–358.
-
(1890)
Ann. Mat.
, vol.18
, Issue.2
, pp. 301-358
-
-
Bianchi, L.1
-
3
-
-
0040138367
-
Sulle varietà a tre dimensioni deformabili entro lo spazio Euclideo a quattro dimensioni
-
[3] Bianchi, L., Sulle varietà a tre dimensioni deformabili entro lo spazio Euclideo a quattro dimensioni. Mem. Soc. It. Delle Sc. 13 (1905), 261–323.
-
(1905)
Mem. Soc. It. Delle Sc.
, vol.13
, pp. 261-323
-
-
Bianchi, L.1
-
4
-
-
85018287641
-
-
Lezioni di Geometria Differenziale, Enrico Spoerri, Pisa
-
[4] L. Bianchi, Lezioni di Geometria Differenziale, Enrico Spoerri, Pisa, 1903.
-
(1903)
-
-
Bianchi, L.1
-
5
-
-
0002611211
-
Discretization of surfaces and integrable systems
-
[5] A.I. Bobenko, U. Pinkall, Discretization of surfaces and integrable systems, in: Discrete Integrable Geometry and Physics, Clarendon Press, Oxford, 1999.
-
(1999)
Discrete Integrable Geometry and Physics, Clarendon Press, Oxford
-
-
Bobenko, A.I.1
Pinkall, U.2
-
6
-
-
0001840625
-
Discrete indefinite affine spheres
-
[6] A.I. Bobenko, W.K. Schief, Discrete indefinite affine spheres, in: Discrete Integrable Geometry and Physics, Clarendon Press, Oxford, 1999.
-
(1999)
Discrete Integrable Geometry and Physics, Clarendon Press, Oxford
-
-
Bobenko, A.I.1
Schief, W.K.2
-
7
-
-
0033248090
-
Affine spheres: discretization via duality relations
-
[7] Bobenko, A.I., Schief, W.K., Affine spheres: discretization via duality relations. Exp. Math. 8 (1999), 261–280.
-
(1999)
Exp. Math.
, vol.8
, pp. 261-280
-
-
Bobenko, A.I.1
Schief, W.K.2
-
8
-
-
35748954153
-
Lattice and q-difference Darboux–Zakharov–Manakov systems via [Figure presented]-dressing method
-
[8] Bogdanov, L.V., Konopelchenko, B.G., Lattice and q-difference Darboux–Zakharov–Manakov systems via [Figure presented]-dressing method. J. Phys. A 28 (1995), L173–L178.
-
(1995)
J. Phys. A
, vol.28
, pp. L173-L178
-
-
Bogdanov, L.V.1
Konopelchenko, B.G.2
-
9
-
-
0002245760
-
Geometric deformations of the evolution equations and Bäcklund transformations
-
[9] Cenkl, B., Geometric deformations of the evolution equations and Bäcklund transformations. Physica D 18 (1986), 217–219.
-
(1986)
Physica D
, vol.18
, pp. 217-219
-
-
Cenkl, B.1
-
10
-
-
0039245205
-
The integrable discrete analogues of orthogonal coordinate systems are multi-dimensional circular lattices
-
[10] Cieslinski, J., Doliwa, A., Santini, P.M., The integrable discrete analogues of orthogonal coordinate systems are multi-dimensional circular lattices. Phys. Lett. A 235 (1997), 480–488.
-
(1997)
Phys. Lett. A
, vol.235
, pp. 480-488
-
-
Cieslinski, J.1
Doliwa, A.2
Santini, P.M.3
-
11
-
-
85018345847
-
-
Le cons sur les Systèmes Orthogonaux et les Coordonnées Curvilignes, Paris
-
[11] G. Darboux, Le cons sur les Systèmes Orthogonaux et les Coordonnées Curvilignes, Paris, 1910.
-
(1910)
-
-
Darboux, G.1
-
12
-
-
0038785830
-
-
Discrete asymptotic nets and W-congruences in Plücker line geometry, J. Geom. Phys. 39 (2001)
-
[12] A. Doliwa, Discrete asymptotic nets and W-congruences in Plücker line geometry, J. Geom. Phys. 39 (2001) 9–29.
-
-
-
Doliwa, A.1
-
13
-
-
0003024768
-
Partial derivative-reductions of the multidimensional quadrilateral lattice. The multidimensional circular lattice
-
[13] Doliwa, A., Manakov, S.V., Santini, P.M., Partial derivative-reductions of the multidimensional quadrilateral lattice. The multidimensional circular lattice. Commun. Math. Phys. 196 (1998), 1–18.
-
(1998)
Commun. Math. Phys.
, vol.196
, pp. 1-18
-
-
Doliwa, A.1
Manakov, S.V.2
Santini, P.M.3
-
14
-
-
85018267277
-
-
The integrable discretization of the Bianchi–Ernst system, Phys. Lett. A, submitted for publication.
-
[14] A. Doliwa, M. Nieszporski, P.M. Santini, The integrable discretization of the Bianchi–Ernst system, Phys. Lett. A, submitted for publication.
-
-
-
Doliwa, A.1
Nieszporski, M.2
Santini, P.M.3
-
15
-
-
0000894684
-
Multidimensional quadrilateral lattices are integrable
-
[15] Doliwa, A., Santini, P.M., Multidimensional quadrilateral lattices are integrable. Phys. Lett. A 233 (1997), 365–372.
-
(1997)
Phys. Lett. A
, vol.233
, pp. 365-372
-
-
Doliwa, A.1
Santini, P.M.2
-
16
-
-
0002800572
-
Geometry of discrete curves and lattices and integrable difference equations
-
[16] A. Doliwa, P.M. Santini, Geometry of discrete curves and lattices and integrable difference equations, in: Discrete Integrable Geometry and Physics, Clarendon Press, Oxford, 1999.
-
(1999)
Discrete Integrable Geometry and Physics, Clarendon Press, Oxford
-
-
Doliwa, A.1
Santini, P.M.2
-
17
-
-
0002659187
-
The symmetric, D-invariant and Egorov reductions of the quadrilateral lattice
-
[17] Doliwa, A., Santini, P.M., The symmetric, D-invariant and Egorov reductions of the quadrilateral lattice. J. Geom. Phys. 36 (2000), 60–102.
-
(2000)
J. Geom. Phys.
, vol.36
, pp. 60-102
-
-
Doliwa, A.1
Santini, P.M.2
-
18
-
-
0034342507
-
Transformations of quadrilateral lattices
-
[18] Doliwa, A., Santini, P.M., Manas, M., Transformations of quadrilateral lattices. J. Math. Phys. 41 (2000), 944–990.
-
(2000)
J. Math. Phys.
, vol.41
, pp. 944-990
-
-
Doliwa, A.1
Santini, P.M.2
Manas, M.3
-
19
-
-
85018350790
-
-
Transformations of Surfaces, Princeton University Press, Princeton, NJ
-
[19] L.P. Eisenhart, Transformations of Surfaces, Princeton University Press, Princeton, NJ, 1923.
-
(1923)
-
-
Eisenhart, L.P.1
-
20
-
-
36049055512
-
New formulation of the axially symmetric gravitational field problem
-
[20] Ernst, F.J., New formulation of the axially symmetric gravitational field problem. Phys. Rev. 167 (1968), 1175–1178.
-
(1968)
Phys. Rev.
, vol.167
, pp. 1175-1178
-
-
Ernst, F.J.1
-
21
-
-
0033197037
-
Stationary Veselov–Novikov equation and isothermally asymptotic surfaces in projective differential geometry
-
[21] Ferapontov, E.V., Stationary Veselov–Novikov equation and isothermally asymptotic surfaces in projective differential geometry. Diff. Geom. Appl. 11 (1999), 117–128.
-
(1999)
Diff. Geom. Appl.
, vol.11
, pp. 117-128
-
-
Ferapontov, E.V.1
-
22
-
-
85018320488
-
-
Theory of Congruences, Gostekhizdat, Moscow/Leningrad, 1950 (in Russian).
-
[22] S.P. Finikov, Theory of Congruences, Gostekhizdat, Moscow/Leningrad, 1950 (in Russian).
-
-
-
Finikov, S.P.1
-
23
-
-
0039637107
-
Su una classe di congruenze W di caractere proiettiva
-
[23] Fubini, G., Su una classe di congruenze W di caractere proiettiva. Rend. Lincei 251:5 (1916), 144–148.
-
(1916)
Rend. Lincei
, vol.251
, Issue.5
, pp. 144-148
-
-
Fubini, G.1
-
24
-
-
85018340353
-
-
Geometria Proiettiva Differenziale, Zanichelli, Bologna
-
[24] G. Fubini, E. Ĉech, Geometria Proiettiva Differenziale, Zanichelli, Bologna, 1926.
-
(1926)
-
-
Fubini, G.1
Ĉech, E.2
-
25
-
-
0032091306
-
Conformal invariant functionals of immersions of tori into R3
-
[25] Grinevich, P.G., Schmidt, M., Conformal invariant functionals of immersions of tori into R3. J. Geom. Phys. 26 (1998), 51–78.
-
(1998)
J. Geom. Phys.
, vol.26
, pp. 51-78
-
-
Grinevich, P.G.1
Schmidt, M.2
-
26
-
-
23844487295
-
Détermination des congruences telles que les lignes asymptotiques se correspondent sur les deux nappes de la surface focale
-
[26] Guichard, C., Détermination des congruences telles que les lignes asymptotiques se correspondent sur les deux nappes de la surface focale. CR 110 (1890), 126–127.
-
(1890)
CR
, vol.110
, pp. 126-127
-
-
Guichard, C.1
-
27
-
-
0002157319
-
Über die Konstruktion der W-Kongruenzen zu einem gegebenen Brennflächenmantel und über die Transformation der R-Flächen
-
[27] Jonas, H., Über die Konstruktion der W-Kongruenzen zu einem gegebenen Brennflächenmantel und über die Transformation der R-Flächen. J. Deutsch. Math. Ver. 29 (1920), 40–74.
-
(1920)
J. Deutsch. Math. Ver.
, vol.29
, pp. 40-74
-
-
Jonas, H.1
-
28
-
-
85018335719
-
Über eine Klasse von Flächen die ein Gegenstück zu den von Demoulin und Tzitzeica betrachteten R-Flächen bilden
-
[28] Jonas, H., Über eine Klasse von Flächen die ein Gegenstück zu den von Demoulin und Tzitzeica betrachteten R-Flächen bilden. Sitzber. Berl. Math. Ges. 19 (1921), 18–30.
-
(1921)
Sitzber. Berl. Math. Ges.
, vol.19
, pp. 18-30
-
-
Jonas, H.1
-
29
-
-
0042674543
-
Sopra una classe di transformazioni asintotiche, applicabili in particolare alle superficie la cui curvature e proporzionale alla quarta potenza della distanza del piano tangente ad un punto fisso
-
[29] Jonas, H., Sopra una classe di transformazioni asintotiche, applicabili in particolare alle superficie la cui curvature e proporzionale alla quarta potenza della distanza del piano tangente ad un punto fisso. Ann. Mat. 30:3 (1921), 223–255.
-
(1921)
Ann. Mat.
, vol.30
, Issue.3
, pp. 223-255
-
-
Jonas, H.1
-
30
-
-
17944397464
-
Integrable deformations of affine surfaces via the Nizhnik–Veselov–Novikov equation
-
[30] Konopelchenko, B.G., Pinkall, U., Integrable deformations of affine surfaces via the Nizhnik–Veselov–Novikov equation. Phys. Lett. A 245 (1998), 239–245.
-
(1998)
Phys. Lett. A
, vol.245
, pp. 239-245
-
-
Konopelchenko, B.G.1
Pinkall, U.2
-
31
-
-
0040823705
-
Projective generalizations of Lelieuvre's formula
-
[31] Konopelchenko, B.G., Pinkall, U., Projective generalizations of Lelieuvre's formula. Geom. Dedicata 79 (2000), 81–99.
-
(2000)
Geom. Dedicata
, vol.79
, pp. 81-99
-
-
Konopelchenko, B.G.1
Pinkall, U.2
-
32
-
-
33746456381
-
Three-dimensional integrable lattices in Euclidean spaces: conjugacy and orthogonality
-
[32] Konopelchenko, B.G., Schief, W.K., Three-dimensional integrable lattices in Euclidean spaces: conjugacy and orthogonality. P.R. Soc. London A 454 (1998), 3075–3104.
-
(1998)
P.R. Soc. London A
, vol.454
, pp. 3075-3104
-
-
Konopelchenko, B.G.1
Schief, W.K.2
-
33
-
-
85018241678
-
-
On some integrable cases in surface theory, Sfb 288, Preprint No. 116, Berlin
-
[33] D. Korotkin, On some integrable cases in surface theory, Sfb 288, Preprint No. 116, Berlin, 1994.
-
(1994)
-
-
Korotkin, D.1
-
34
-
-
0001240255
-
Sur les lignes asymptotiques et leur représentation sphérique
-
[34] Lelieuvre, M., Sur les lignes asymptotiques et leur représentation sphérique. Bull. Sci. Math. 12 (1888), 126–128.
-
(1888)
Bull. Sci. Math.
, vol.12
, pp. 126-128
-
-
Lelieuvre, M.1
-
35
-
-
0000187921
-
Integrable systems describing surfaces of non-constant curvature
-
[35] Levi, D., Sym, A., Integrable systems describing surfaces of non-constant curvature. Phys. Lett. A 149 (1990), 381–387.
-
(1990)
Phys. Lett. A
, vol.149
, pp. 381-387
-
-
Levi, D.1
Sym, A.2
-
36
-
-
0001827624
-
Darboux transformations for multidimensional quadrilateral lattices, 1
-
[36] Manas, M., Doliwa, A., Santini, P.M., Darboux transformations for multidimensional quadrilateral lattices, 1. Phys. Lett. A 232 (1997), 99–105.
-
(1997)
Phys. Lett. A
, vol.232
, pp. 99-105
-
-
Manas, M.1
Doliwa, A.2
Santini, P.M.3
-
37
-
-
0034420622
-
Dirac operator on a conformal surface immersed in R-4: a way to further generalized Weierstrass equation
-
[37] Matsutani, S., Dirac operator on a conformal surface immersed in R-4: a way to further generalized Weierstrass equation. Rev. Math. Phys. 12 (2000), 431–444.
-
(2000)
Rev. Math. Phys.
, vol.12
, pp. 431-444
-
-
Matsutani, S.1
-
38
-
-
0002459313
-
2z/∂x∂y)=λ(x,y), qui admettent une integrale général explicite
-
2z/∂x∂y)=λ(x,y), qui admettent une integrale général explicite. J. Ec. Pol., 45, 1878, 1.
-
(1878)
J. Ec. Pol.
, vol.45
, pp. 1
-
-
Moutard, T.-F.1
-
39
-
-
0034679388
-
The multicomponent Ernst equation and the Moutard transformation
-
[39] Nieszporski, M., The multicomponent Ernst equation and the Moutard transformation. Phys. Lett. A 272 (2000), 74–79.
-
(2000)
Phys. Lett. A
, vol.272
, pp. 74-79
-
-
Nieszporski, M.1
-
40
-
-
33746752207
-
Superposition principles associated with the Moutard transformation: an integrable discretization of a (2+1)-dimensional sine-Gordon system
-
[40] Nimmo, J.J.C., Schief, W.K., Superposition principles associated with the Moutard transformation: an integrable discretization of a (2+1)-dimensional sine-Gordon system. Proc. R. Soc. London A 453 (1997), 255–279.
-
(1997)
Proc. R. Soc. London A
, vol.453
, pp. 255-279
-
-
Nimmo, J.J.C.1
Schief, W.K.2
-
41
-
-
0039045082
-
Sopra una classe di transformazioni delle superficie isotermo-assintotiche (asymptotiche) ed il relativo teorema di permutabilita
-
[41] Ragazzi, E., Sopra una classe di transformazioni delle superficie isotermo-assintotiche (asymptotiche) ed il relativo teorema di permutabilita. Rend. Palermo 45 (1921), 200–210.
-
(1921)
Rend. Palermo
, vol.45
, pp. 200-210
-
-
Ragazzi, E.1
-
42
-
-
85018309716
-
-
Differenzengeometrie, Springer, Berlin
-
[42] R. Sauer, Differenzengeometrie, Springer, Berlin, 1970.
-
(1970)
-
-
Sauer, R.1
-
43
-
-
0002687888
-
On hyperbolic surfaces: moving triad and Loewner system connections
-
[43] Schief, W.K., Rogers, C., Johnston, M.E., On hyperbolic surfaces: moving triad and Loewner system connections. Solitons and Fractals 5 (1995), 25–34.
-
(1995)
Solitons and Fractals
, vol.5
, pp. 25-34
-
-
Schief, W.K.1
Rogers, C.2
Johnston, M.E.3
-
44
-
-
0003004072
-
Self-dual Einstein spaces via a permutability theorem for the Tzitzeica equation
-
[44] Schief, W.K., Self-dual Einstein spaces via a permutability theorem for the Tzitzeica equation. Phys. Lett. A 223 (1996), 55–62.
-
(1996)
Phys. Lett. A
, vol.223
, pp. 55-62
-
-
Schief, W.K.1
-
45
-
-
85018239733
-
-
Self-dual Einstein spaces and a discrete Tzitzeica equation. A permutability theorem link, in: Proceedings of the Symmetries and Integrability of Difference Equations, Cambridge University Press, Cambridge
-
[45] W.K. Schief, Self-dual Einstein spaces and a discrete Tzitzeica equation. A permutability theorem link, in: Proceedings of the Symmetries and Integrability of Difference Equations, Cambridge University Press, Cambridge, 1999.
-
(1999)
-
-
Schief, W.K.1
-
46
-
-
22844455935
-
Finite-gap solutions of the modified Novikov–Veselov equations: their spectral properties and applications
-
[46] Taimanov, I.A., Finite-gap solutions of the modified Novikov–Veselov equations: their spectral properties and applications. Siberian Math. J. 40 (1999), 1146–1156.
-
(1999)
Siberian Math. J.
, vol.40
, pp. 1146-1156
-
-
Taimanov, I.A.1
-
47
-
-
0002046189
-
3 with prescribed curvature
-
3 with prescribed curvature. J. Geom. Phys. 17 (1995), 381–390.
-
(1995)
J. Geom. Phys.
, vol.17
, pp. 381-390
-
-
Tafel, J.1
-
48
-
-
0242386851
-
A note on modified Veselov–Novikov hierarchy
-
[48] Yamagishi, K., A note on modified Veselov–Novikov hierarchy. Phys. Lett. B 454 (1999), 31–37.
-
(1999)
Phys. Lett. B
, vol.454
, pp. 31-37
-
-
Yamagishi, K.1
-
49
-
-
0003022531
-
Description of the n-orthogonal curvilinear coordinate systems and Hamiltonian integrable systems of hydrodynamic type. I: Integration of the Lame equations
-
[49] Zakharov, V.E., Description of the n-orthogonal curvilinear coordinate systems and Hamiltonian integrable systems of hydrodynamic type. I: Integration of the Lame equations. Duke Math. J. 94 (1998), 103–139.
-
(1998)
Duke Math. J.
, vol.94
, pp. 103-139
-
-
Zakharov, V.E.1
-
50
-
-
7044276938
-
On reduction in systems integrable by method of inverse problem dispersion
-
[50] Zakharov, V.E., Manakov, S.V., On reduction in systems integrable by method of inverse problem dispersion. Dokl. Akad. Nauk. 360 (1998), 324–327.
-
(1998)
Dokl. Akad. Nauk.
, vol.360
, pp. 324-327
-
-
Zakharov, V.E.1
Manakov, S.V.2
-
51
-
-
23844488650
-
Sur une classe particulière de congruences de droites
-
[51] Guichard, C., Sur une classe particulière de congruences de droites. CR 112 (1891), 1424–1426.
-
(1891)
CR
, vol.112
, pp. 1424-1426
-
-
Guichard, C.1
|