메뉴 건너뛰기




Volumn 213, Issue 5, 1998, Pages 915-941

Frequency domain analysis of NARX neural networks

Author keywords

[No Author keywords available]

Indexed keywords


EID: 0040118678     PISSN: 0022460X     EISSN: None     Source Type: Journal    
DOI: 10.1006/jsvi.1998.1539     Document Type: Article
Times cited : (28)

References (36)
  • 3
    • 85030042188 scopus 로고
    • PhD Thesis, University of Newcastle upon Tyne. An integrated approach to neuronal modelling
    • P. HEARNE 1995 PhD Thesis, University of Newcastle upon Tyne. An integrated approach to neuronal modelling.
    • (1995)
    • Hearne, P.1
  • 4
    • 0040112420 scopus 로고
    • New York: Plenum Press. On the relation between Volterra models and feedforward artificial neural networks
    • V. Z. MARMARELIS and X. ZHAO 1994 in Advanced Methods of System Modelling, Volume 3, 243-259. New York: Plenum Press. On the relation between Volterra models and feedforward artificial neural networks.
    • (1994) Advanced Methods of System Modelling , vol.3 , pp. 243-259
    • Marmarelis, V.Z.1    Zhao, X.2
  • 5
    • 0025676386 scopus 로고
    • The identification of nonlinear biological systems: Wiener kernel approaches
    • M. J. KORENBERG and I. W. HUNTER 1990 Annals of Biomedical Engineering 18, 629-654. The identification of nonlinear biological systems: Wiener kernel approaches.
    • (1990) Annals of Biomedical Engineering , vol.18 , pp. 629-654
    • Korenberg, M.J.1    Hunter, I.W.2
  • 6
    • 0028733792 scopus 로고
    • Calculation of the Volterra kernels of nonlinear dynamic systems using an artificial neural network
    • J. WRAY and G. G. R. GREEN 1994 Biological Cybernetics 71, 187-195. Calculation of the Volterra kernels of nonlinear dynamic systems using an artificial neural network.
    • (1994) Biological Cybernetics , vol.71 , pp. 187-195
    • Wray, J.1    Green, G.G.R.2
  • 7
    • 0001058679 scopus 로고
    • Spectral analysis for nonlinear systems, part I: parametric non-linear spectral analysis
    • S. A. BILLINGS and K. M. TSANG 1989 Mechanical Systems and Signal Processing 3, 319-339. Spectral analysis for nonlinear systems, part I: parametric non-linear spectral analysis.
    • (1989) Mechanical Systems and Signal Processing , vol.3 , pp. 319-339
    • Billings, S.A.1    Tsang, K.M.2
  • 11
    • 0005483993 scopus 로고
    • The Volterra representation and the Wiener expansion: validity and pitfalls
    • G. PALM and T. POGGIO 1977 SIAM Journal on Applied Mathematics 33, part 2, 195-216. The Volterra representation and the Wiener expansion: validity and pitfalls.
    • (1977) SIAM Journal on Applied Mathematics , vol.33 , Issue.2 PART , pp. 195-216
    • Palm, G.1    Poggio, T.2
  • 14
    • 84907167554 scopus 로고    scopus 로고
    • M.I.T., Cambridge, MA. (Also published as U.S. Department of Commerce Publications PB-58087.) Response of a nonlinear device to noise
    • N. WIENER Report no. 129, Radiation Laboratory, M.I.T., Cambridge, MA. (Also published as U.S. Department of Commerce Publications PB-58087.) Response of a nonlinear device to noise.
    • Report No. 129, Radiation Laboratory , vol.129
    • Wiener, N.1
  • 15
    • 84943460003 scopus 로고
    • Measurement of the Wiener kernels of a nonlinear system by cross-correlation
    • Y. W. LEE and M. SCHETZEN 1965 International Journal of Control 2, 237-254. Measurement of the Wiener kernels of a nonlinear system by cross-correlation.
    • (1965) International Journal of Control , vol.2 , pp. 237-254
    • Lee, Y.W.1    Schetzen, M.2
  • 16
    • 0015205886 scopus 로고
    • The output properties of Volterra systems driven by harmonic and Gaussian inputs
    • E. BEDROSIAN and S. O. RICE 1971 Proceedings IEEE 59, 1688-1707. The output properties of Volterra systems driven by harmonic and Gaussian inputs.
    • (1971) Proceedings IEEE , vol.59 , pp. 1688-1707
    • Bedrosian, E.1    Rice, S.O.2
  • 17
    • 0024631931 scopus 로고
    • Representations of non-linear systems: the NARMAX model
    • S. CHEN and S. A. BILLINGS 1989 International Journal of Control 49, 1013-1032. Representations of non-linear systems: the NARMAX model.
    • (1989) International Journal of Control , vol.49 , pp. 1013-1032
    • Chen, S.1    Billings, S.A.2
  • 18
    • 84877479752 scopus 로고
    • Properties of neural networks with applications to modelling non-linear dynamical systems
    • S. A. BILLINGS, H. B. JAMALUDDIN and S. CHEN 1992 International Journal of Control 55, 193-224. Properties of neural networks with applications to modelling non-linear dynamical systems.
    • (1992) International Journal of Control , vol.55 , pp. 193-224
    • Billings, S.A.1    Jamaluddin, H.B.2    Chen, S.3
  • 19
    • 0022011031 scopus 로고
    • Input output parametric models for nonlinear systems. Part I: deterministic nonlinear systems
    • I. J. LEONTARITIS and S. A. BILLINGS 1985 International Journal of Control 41, 303-328. Input output parametric models for nonlinear systems. Part I: deterministic nonlinear systems.
    • (1985) International Journal of Control , vol.41 , pp. 303-328
    • Leontaritis, I.J.1    Billings, S.A.2
  • 20
    • 0024861871 scopus 로고
    • Approximation by superpositions of sigmoidal functions
    • G. CYBENKO 1989 Mathematics of Control, Signals and Systems 2, 303-314. Approximation by superpositions of sigmoidal functions.
    • (1989) Mathematics of Control, Signals and Systems , vol.2 , pp. 303-314
    • Cybenko, G.1
  • 21
    • 0024866495 scopus 로고
    • On the approximate realisation of continuous mapping by neural networks
    • K. FUNAHASHI 1989 Neural Networks 2, 183-192. On the approximate realisation of continuous mapping by neural networks.
    • (1989) Neural Networks , vol.2 , pp. 183-192
    • Funahashi, K.1
  • 22
    • 85030048361 scopus 로고
    • Institute for Advanced Computer Studies, University of Maryland, College Park. Computational capabilities of recurrent NARX neural networks
    • H. T. SIEGELMAN, B. G. HORNE and C. L. GILES 1995 Technical Report UMIACS-TR-95-12 and CS-TR-3408, Institute for Advanced Computer Studies, University of Maryland, College Park. Computational capabilities of recurrent NARX neural networks.
    • (1995) Technical Report UMIACS-TR-95-12 and CS-TR-3408
    • Siegelman, H.T.1    Horne, B.G.2    Giles, C.L.3
  • 25
    • 0040775595 scopus 로고
    • Computation of non-linear transfer functions when constant terms are present
    • S. A. BILLINGS and H. ZHANG 1995 Mechanical Systems and Signal Processing 9, 537-553. Computation of non-linear transfer functions when constant terms are present.
    • (1995) Mechanical Systems and Signal Processing , vol.9 , pp. 537-553
    • Billings, S.A.1    Zhang, H.2
  • 26
    • 0000621802 scopus 로고
    • Multivariable functional interpolation and adaptive networks
    • D. S. BROOMEHEAD and D. LOWE 1988 Complex Systems 2, 321-355. Multivariable functional interpolation and adaptive networks.
    • (1988) Complex Systems , vol.2 , pp. 321-355
    • Broomehead, D.S.1    Lowe, D.2
  • 29
    • 0025490985 scopus 로고
    • Network for approximation and learning
    • T. POGGIO and F. GIROSI 1990 Proceedings of IEEE 78, 1481-1497. Network for approximation and learning.
    • (1990) Proceedings of IEEE , vol.78 , pp. 1481-1497
    • Poggio, T.1    Girosi, F.2
  • 30
    • 0025725983 scopus 로고
    • Conference Publication Number 332, 261-265. Analysis of networks that have learnt control problems
    • J. WRAY and G. G. R. GREEN 1991 in Proceedings of IEE Control 91, Volume 1, Conference Publication Number 332, 261-265. Analysis of networks that have learnt control problems.
    • (1991) Proceedings of IEE Control 91 , vol.1
    • Wray, J.1    Green, G.G.R.2
  • 32
    • 0024771664 scopus 로고
    • Orthogonal least-squares methods and their application to non-linear system identification
    • S. CHEN, S. A. BILLINGS and W. LUO 1980 International Journal of Control 50, 1873-1896. Orthogonal least-squares methods and their application to non-linear system identification.
    • (1980) International Journal of Control , vol.50 , pp. 1873-1896
    • Chen, S.1    Billings, S.A.2    W, L.U.O.3
  • 36
    • 85030055662 scopus 로고    scopus 로고
    • submitted. Pruning backpropagation neural networks using modern stochastic optimisation techniques
    • S. W. STEPNIEWSKI and A. J. KEANE 1996 Neural Computing and Applications, submitted. Pruning backpropagation neural networks using modern stochastic optimisation techniques.
    • (1996) Neural Computing and Applications
    • Stepniewski, S.W.1    Keane, A.J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.