-
1
-
-
0003251208
-
Asymptotic optimal inference for non-ergodic models
-
Springer, New York
-
BASAWA, I. V. AND SCOTT, D. J. (1983). Asymptotic Optimal Inference for Non-Ergodic Models. Lecture Notes in Statistics 17, Springer, New York.
-
(1983)
Lecture Notes in Statistics
, vol.17
-
-
Basawa, I.V.1
Scott, D.J.2
-
2
-
-
0000913755
-
Spatial interaction and the statistical analysis of lattice systems
-
BESAG, J. (1974). Spatial interaction and the statistical analysis of lattice systems. J. R. Statist. Soc. B 36, 192-236.
-
(1974)
J. R. Statist. Soc. B
, vol.36
, pp. 192-236
-
-
Besag, J.1
-
3
-
-
0000963886
-
On the central limit theorem for stationary mixing random fields
-
BOLTHAUSEN, E. (1982). On the central limit theorem for stationary mixing random fields. Ann. Prob. 10, 1047-1050.
-
(1982)
Ann. Prob.
, vol.10
, pp. 1047-1050
-
-
Bolthausen, E.1
-
4
-
-
0000695777
-
On consistency of a class of estimators for exponential families of Markov random fields on a lattice
-
COMETS, F. (1992). On consistency of a class of estimators for exponential families of Markov random fields on a lattice. Ann. Statist. 20, 455-468.
-
(1992)
Ann. Statist.
, vol.20
, pp. 455-468
-
-
Comets, F.1
-
5
-
-
0000145022
-
Central limit theorems for associated random variables and the percolation model
-
COX, J. T. AND GRIMMETT, G. R. (1984). Central limit theorems for associated random variables and the percolation model. Ann. Prob. 12, 514-528.
-
(1984)
Ann. Prob.
, vol.12
, pp. 514-528
-
-
Cox, J.T.1
Grimmett, G.R.2
-
6
-
-
0040545177
-
Strong convexity of the pressure for lattice systems of classical statistical physics
-
DOBRUSHIN, R. L. AND NAHAPETIAN, B. S. (1974). Strong convexity of the pressure for lattice systems of classical statistical physics (in Russian). Teoret. Mat. Fiz. 20, 223-234.
-
(1974)
Teoret. Mat. Fiz.
, vol.20
, pp. 223-234
-
-
Dobrushin, R.L.1
Nahapetian, B.S.2
-
11
-
-
26744464034
-
Local limit theorem for sums of finite range potentials of a Gibbsian random field
-
GÖTZE, F. AND HIPP, C. (1990). Local limit theorem for sums of finite range potentials of a Gibbsian random field. Ann. Prob. 18, 810-828.
-
(1990)
Ann. Prob.
, vol.18
, pp. 810-828
-
-
Götze, F.1
Hipp, C.2
-
13
-
-
0001550807
-
Asymptotic comparison of estimators in the Ising model
-
Springer, Berlin
-
GUYON, X. AND KÜNSCH, H. R. (1992). Asymptotic comparison of estimators in the Ising model. Lecture Notes in Statistics 74, Springer, Berlin, pp. 177-198.
-
(1992)
Lecture Notes in Statistics
, vol.74
, pp. 177-198
-
-
Guyon, X.1
Künsch, H.R.2
-
14
-
-
0039471453
-
A central limit theorem for stationary random fields
-
JANŽURA, M. AND LACHOUT, P. (1995). A central limit theorem for stationary random fields. Math. Meth. Statist. 4, 463-472.
-
(1995)
Math. Meth. Statist.
, vol.4
, pp. 463-472
-
-
Janžura, M.1
Lachout, P.2
-
15
-
-
0000716774
-
On asymptotic normality of pseudo likelihood estimates for pairwise interaction processes
-
JENSEN, J. L. AND KÜNSCH, H. R. (1994). On asymptotic normality of pseudo likelihood estimates for pairwise interaction processes. Ann. Inst. Statist. Math. 46, 475-486.
-
(1994)
Ann. Inst. Statist. Math.
, vol.46
, pp. 475-486
-
-
Jensen, J.L.1
Künsch, H.R.2
-
16
-
-
0000352449
-
Martingale-difference Gibbs random fields and central limit theorem
-
Series A-I
-
NAHAPETIAN, B. AND PETROSIAN, A. N. (1992). Martingale-difference Gibbs random fields and central limit theorem. Ann. Acad. Sci. Fennicae, Series A-I 17, 105-110.
-
(1992)
Ann. Acad. Sci. Fennicae
, vol.17
, pp. 105-110
-
-
Nahapetian, B.1
Petrosian, A.N.2
-
17
-
-
0002636084
-
Normal fluctuations and the FKG inequalities
-
NEWMAN, C. M. (1980). Normal fluctuations and the FKG inequalities. Commun. Math. Phys. 74, 119-128.
-
(1980)
Commun. Math. Phys.
, vol.74
, pp. 119-128
-
-
Newman, C.M.1
-
19
-
-
0000457248
-
A bound for the error in the normal approximation of a sum of dependent random variables
-
STEIN, CH. (1973). A bound for the error in the normal approximation of a sum of dependent random variables. In Proc. Sixth Berkeley Symp. Math. Statist. Prob. 2, 583-602.
-
(1973)
Proc. Sixth Berkeley Symp. Math. Statist. Prob.
, vol.2
, pp. 583-602
-
-
Stein, Ch.1
|