메뉴 건너뛰기




Volumn 60, Issue 3, 1999, Pages 377-390

Periodic solutions of some differential delay equations created by Hamiltonian systems

Author keywords

[No Author keywords available]

Indexed keywords


EID: 0040036791     PISSN: 00049727     EISSN: None     Source Type: Journal    
DOI: 10.1017/s000497270003656x     Document Type: Article
Times cited : (24)

References (16)
  • 1
    • 84972498453 scopus 로고
    • An exact formula for the branch of period-4-solutions of ẋ = -λf(x(t - 1)) which bifurcates at λ = π/2
    • O. Arino and A.A. Cherif, 'An exact formula for the branch of period-4-solutions of ẋ = -λf(x(t - 1)) which bifurcates at λ = π/2', Differential Integral Equations 2 (1989), 162-169.
    • (1989) Differential Integral Equations , vol.2 , pp. 162-169
    • Arino, O.1    Cherif, A.A.2
  • 2
    • 0010137547 scopus 로고
    • More on ordinary differential equations which yield periodic solutions of delay differential equations
    • O. Arino and A.A. Cherif, 'More on ordinary differential equations which yield periodic solutions of delay differential equations', J. Math. Anal. Appl. 180 (1993), 361-385.
    • (1993) J. Math. Anal. Appl. , vol.180 , pp. 361-385
    • Arino, O.1    Cherif, A.A.2
  • 3
    • 38249011664 scopus 로고
    • The existence of periodic solutions of the equation x′(t) = -f(x(t), x(t - τ))
    • Y. Chen, 'The existence of periodic solutions of the equation x′(t) = -f(x(t), x(t - τ))', J. Math. Anal. Appl. 163 (1992), 227-237.
    • (1992) J. Math. Anal. Appl. , vol.163 , pp. 227-237
    • Chen, Y.1
  • 4
    • 0040072781 scopus 로고
    • The existence of periodic solutions for a class of neutral differential difference equations
    • Y. Chen, 'The existence of periodic solutions for a class of neutral differential difference equations', J. Austral. Math. Soc. Ser. B 33 (1992), 508-516.
    • (1992) J. Austral. Math. Soc. Ser. B , vol.33 , pp. 508-516
    • Chen, Y.1
  • 6
    • 0042226420 scopus 로고
    • The number of simple periodic solutions to the differential-difference equation ẋ(t) = f(x(t - 1))
    • W. Ge, 'The number of simple periodic solutions to the differential-difference equation ẋ(t) = f(x(t - 1))', Chinese Ann. Math. Ser. A 14 (1993), 472-479.
    • (1993) Chinese Ann. Math. Ser. A , vol.14 , pp. 472-479
    • Ge, W.1
  • 7
    • 0039028414 scopus 로고
    • Periodic solutions of differential delay equations with multiple lags
    • W. Ge, 'Periodic solutions of differential delay equations with multiple lags', Acta. Math. Appl. Sinica 17 (1994), 172-181.
    • (1994) Acta. Math. Appl. Sinica , vol.17 , pp. 172-181
    • Ge, W.1
  • 9
    • 0013052376 scopus 로고
    • On the construction of periodic solutions of Kaplan-Yorke type for some differential delay equations
    • K. Gopalsamy, J. Li and X. He, 'On the construction of periodic solutions of Kaplan-Yorke type for some differential delay equations', Appl. Anal. 59 (1995), 65-80.
    • (1995) Appl. Anal. , vol.59 , pp. 65-80
    • Gopalsamy, K.1    Li, J.2    He, X.3
  • 10
    • 0003129505 scopus 로고
    • Solution of ẋ(t) = -g(x(t - 1)) approach the Kaplan-Yorke orbits for odd sigmoid
    • A.V. Herz, 'Solution of ẋ(t) = -g(x(t - 1)) approach the Kaplan-Yorke orbits for odd sigmoid', J. Differential Equations 118 (1995), 36-53.
    • (1995) J. Differential Equations , vol.118 , pp. 36-53
    • Herz, A.V.1
  • 11
    • 0016128963 scopus 로고
    • Ordinary differential equations which yield periodic solutions of differential-delay equations
    • J.L. Kaplan and J.A. Yorke, 'Ordinary differential equations which yield periodic solutions of differential-delay equations', J. Math. Anal. Appl. 48 (1974), 317-324.
    • (1974) J. Math. Anal. Appl. , vol.48 , pp. 317-324
    • Kaplan, J.L.1    Yorke, J.A.2
  • 12
    • 0039481007 scopus 로고    scopus 로고
    • Proof and generalisation of Kaplan-Yorke's conjecture on periodic solution of differential delay equations
    • J. Li and X. He, 'Proof and generalisation of Kaplan-Yorke's conjecture on periodic solution of differential delay equations', Sci. Sinica Ser. A 47 (1999), 1-9.
    • (1999) Sci. Sinica Ser. A , vol.47 , pp. 1-9
    • Li, J.1    He, X.2
  • 13
    • 84971149516 scopus 로고
    • Periodic solutions of special differential equation: An example in nonlinear functional analysis
    • R.D. Nussbaum, 'Periodic solutions of special differential equation: an example in nonlinear functional analysis', Proc. Royal. Soc. Edinburgh Sect. A 81 (1978), 131-151.
    • (1978) Proc. Royal. Soc. Edinburgh Sect. A , vol.81 , pp. 131-151
    • Nussbaum, R.D.1
  • 14
    • 49249146492 scopus 로고
    • Uniqueness and onouniqueness for periodic solutions x′(t) = -g(x(t - 1))
    • R.D. Nussbaum, 'Uniqueness and onouniqueness for periodic solutions x′(t) = -g(x(t - 1))', J. Differential Equations 34 (1979), 25-54.
    • (1979) J. Differential Equations , vol.34 , pp. 25-54
    • Nussbaum, R.D.1
  • 15
    • 0039481016 scopus 로고
    • Existence of periodic solutions of a class of differential-difference equations
    • L. Wen, 'Existence of periodic solutions of a class of differential-difference equations', Chinese Ann. Math. Ser. A 10 (1989), 249-254.
    • (1989) Chinese Ann. Math. Ser. A , vol.10 , pp. 249-254
    • Wen, L.1
  • 16
    • 0038888293 scopus 로고
    • Existence of periodic solutions for differential-difference equation with two time laps
    • L. Wen and H. Xia, 'Existence of periodic solutions for differential-difference equation with two time laps', Sci. Sinica Ser. A 31 (1988), 777-786.
    • (1988) Sci. Sinica Ser. A , vol.31 , pp. 777-786
    • Wen, L.1    Xia, H.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.