-
1
-
-
18944408338
-
Soliton solutions of a coupled Korteweg-de Vries equation
-
R. Hirota and J. Satsuma, Soliton solutions of a coupled Korteweg-de Vries equation, Phys. Lett. A 85, 407-408, (1981).
-
(1981)
Phys. Lett. A
, vol.85
, pp. 407-408
-
-
Hirota, R.1
Satsuma, J.2
-
2
-
-
0001732956
-
Symmetries and conservation laws of a coupled nonlinear wave equation
-
M. Ito, Symmetries and conservation laws of a coupled nonlinear wave equation, Phys. Lett. A 91, 335-338, (1982).
-
(1982)
Phys. Lett. A
, vol.91
, pp. 335-338
-
-
Ito, M.1
-
3
-
-
0001148419
-
A higher order water wave equation and the method for solving it
-
D.J. Kaup, A higher order water wave equation and the method for solving it. Prog. Theor. Phys. 54, 396-408, (1975).
-
(1975)
Prog. Theor. Phys.
, vol.54
, pp. 396-408
-
-
Kaup, D.J.1
-
4
-
-
0001695541
-
A super KdV equation: An integrable system
-
B.A. Kupershmidt, A super KdV equation: An integrable system, Phys. Lett. A 102, 213-215, (1984).
-
(1984)
Phys. Lett. A
, vol.102
, pp. 213-215
-
-
Kupershmidt, B.A.1
-
5
-
-
34250112720
-
Mathematics of dispersive water wave
-
B.A. Kupershmidt, Mathematics of dispersive water wave, Commun. Math. Phys. 99, 51-73, (1985).
-
(1985)
Commun. Math. Phys.
, vol.99
, pp. 51-73
-
-
Kupershmidt, B.A.1
-
6
-
-
45949112965
-
Coupled KdV equations with multi-Hamiltonian structures
-
M. Antonowicz and A.P. Fordy, Coupled KdV equations with multi-Hamiltonian structures, Physica 28D, 345-357, (1987).
-
(1987)
Physica
, vol.28 D
, pp. 345-357
-
-
Antonowicz, M.1
Fordy, A.P.2
-
7
-
-
85008279103
-
Solitons and infinite dimensional Lie algebras
-
M. Jimbo and T. Miwa, Solitons and infinite dimensional Lie algebras, Publ. RIMS, Kyoto University 19, 943-1001, (1983).
-
(1983)
Publ. RIMS, Kyoto University
, vol.19
, pp. 943-1001
-
-
Jimbo, M.1
Miwa, T.2
-
8
-
-
0039287720
-
Inverse scattering, ordinary differential equations of Painleve-type, and Hirota's bilinear formalism
-
Edited by J.L. Lebowitz, Academy of Sciences, New York
-
th Int. Conf. Collective Phenomena, (Edited by J.L. Lebowitz), p. 54, Academy of Sciences, New York, (1981).
-
(1981)
th Int. Conf. Collective Phenomena
, pp. 54
-
-
Ramani, A.1
-
9
-
-
0002464716
-
Direct methods in soliton theory
-
Edited by R.K. Bullough and P.J. Caudrey, Springer, Berlin
-
R. Hirota, Direct methods in soliton theory, In Solitons, (Edited by R.K. Bullough and P.J. Caudrey), Springer, Berlin, (1980).
-
(1980)
Solitons
-
-
Hirota, R.1
-
10
-
-
0001935348
-
A variety of nonlinear network equations generated from the Bäcklund transformation for the Toda lattice
-
R. Hirota and J. Satsuma, A variety of nonlinear network equations generated from the Bäcklund transformation for the Toda lattice, Prog. Theor. Phys. Suppl. 59, 64-100, (1976).
-
(1976)
Prog. Theor. Phys. Suppl.
, vol.59
, pp. 64-100
-
-
Hirota, R.1
Satsuma, J.2
-
12
-
-
0003359162
-
Hirota's method
-
Edited by A.P. Fordy, Manchester University Press, Manchester
-
J.J.C. Nimmo, Hirota's method, In Soliton Theory, A survey of results, (Edited by A.P. Fordy), Manchester University Press, Manchester, (1990).
-
(1990)
Soliton Theory, A Survey of Results
-
-
Nimmo, J.J.C.1
-
13
-
-
0039359643
-
A coupled KdV equation is one case of the four-reduction of the KP hierarchy
-
J. Satsuma and R. Hirota, A coupled KdV equation is one case of the four-reduction of the KP hierarchy, J. Phys. Soc. Japan 51, 3390-3397, (1982).
-
(1982)
J. Phys. Soc. Japan
, vol.51
, pp. 3390-3397
-
-
Satsuma, J.1
Hirota, R.2
-
14
-
-
0003409031
-
-
Addison-Wesley, New York
-
nd Edition, Addison-Wesley, New York, (1992).
-
(1992)
nd Edition
-
-
Wolfram, S.1
|