-
6
-
-
0005450770
-
-
M. A. Smith, Y. Bar-Yam, Y. Rabin, B. Ostrovski, C. A. Bennett, N. Margolus, and T. Toffoli, Comput. Polymer Sci. 2, 165 (1992).
-
(1992)
Comput. Polymer Sci.
, vol.2
, pp. 165
-
-
Smith, M.A.1
Bar-Yam, Y.2
Rabin, Y.3
Ostrovski, B.4
Bennett, C.A.5
Margolus, N.6
Toffoli, T.7
-
8
-
-
33645713517
-
-
104, 336 (1996).
-
(1996)
J. Chem. Phys.
, vol.104
, pp. 336
-
-
-
9
-
-
36449006738
-
-
A. Byrne, P. Kieman, D. Green, and K. A. Dawson, J. Chem. Phys. 102, 573 (1995).
-
(1995)
J. Chem. Phys.
, vol.102
, pp. 573
-
-
Byrne, A.1
Kieman, P.2
Green, D.3
Dawson, K.A.4
-
18
-
-
85033035794
-
-
note
-
3.
-
-
-
-
19
-
-
85033049473
-
-
note
-
b is the bare mobility of monomers. Henceforth we shall disregard the hydrodynamic interaction, which could be easily incorporated into our scheme and discussed in detail in Ref. 11.
-
-
-
-
20
-
-
0000444218
-
-
ibid, (in press)
-
E. G. Timoshenko, Yu. A. Kuznetsov, and K. A. Dawson, Phys. Rev. E 53, 3886 (1996); ibid, (in press).
-
(1996)
Phys. Rev. e
, vol.53
, pp. 3886
-
-
Timoshenko, E.G.1
Kuznetsov, Y.A.2
Dawson, K.A.3
-
23
-
-
0040159969
-
-
Europhys. Lett. 33, 353 (1996);
-
(1996)
Europhys. Lett.
, vol.33
, pp. 353
-
-
-
29
-
-
36449006012
-
-
V. V. Vasilevskaya, A. R. Khokhlov, Y. Matsuzawa, and K. Yoshikawa, J. Chem. Phys. 102, 6595 (1995).
-
(1995)
J. Chem. Phys.
, vol.102
, pp. 6595
-
-
Vasilevskaya, V.V.1
Khokhlov, A.R.2
Matsuzawa, Y.3
Yoshikawa, K.4
-
40
-
-
85033043244
-
-
Formulas for an open polymer may be found in Ref. 11.
-
Formulas for an open polymer may be found in Ref. 11.
-
-
-
-
41
-
-
85033051425
-
-
Note that the Gaussian trial Hamiltonian has the flaw that the extended coil has an incorrect (Reiss) swelling exponent v=2/3, unless one makes a specific cut-off (Ref. 35)
-
Note that the Gaussian trial Hamiltonian has the flaw that the extended coil has an incorrect (Reiss) swelling exponent v=2/3, unless one makes a specific cut-off (Ref. 35).
-
-
-
-
42
-
-
85033061113
-
-
note
-
min one can, strictly speaking, say that it is connected to the mean squared intrinsic diameter only up to some multiplicative factor, depending on many details of the local interaction.
-
-
-
-
43
-
-
85033069898
-
-
note
-
Since for a finite size system this continuous transition occurs in a region of width ∼1/N, the transition line is not so well defined. Practically, curve I has been obtained as the point of the most rapid decrease of the radius of gyration.
-
-
-
-
44
-
-
85033049673
-
-
note
-
3.
-
-
-
|