메뉴 건너뛰기




Volumn 24, Issue 1, 1996, Pages 422-437

Symmetrization and concentration inequalities for multilinear forms with applications to zero-one laws for lévy chaos

Author keywords

Concentration inequality; Infinitely divisible chaos; Infinitely divisible processes; L vy chaos; Multilinear forms; Multilinear integrals; Random measure; Sample path properties; Stochastic integrals; Symmetrization; Zero one laws

Indexed keywords


EID: 0039568497     PISSN: 00911798     EISSN: None     Source Type: Journal    
DOI: 10.1214/aop/1042644724     Document Type: Article
Times cited : (12)

References (20)
  • 1
    • 0042245029 scopus 로고
    • Zero-one laws for semigroups of measures on groups
    • S. Cambanis, J. K. Ghosh, R. L. Karandikar and P. K. Sen, eds. Springer, New York
    • BYCZKOWSKI, T. and RAJPUT, B. (1983). Zero-one laws for semigroups of measures on groups. In Stochastic Processes, A Festschrift in Honour of Gopinath Kallianpur (S. Cambanis, J. K. Ghosh, R. L. Karandikar and P. K. Sen, eds.) 23-30. Springer, New York.
    • (1983) Stochastic Processes, A Festschrift in Honour of Gopinath Kallianpur , pp. 23-30
    • Byczkowski, T.1    Rajput, B.2
  • 2
    • 84966205669 scopus 로고
    • Additive functionals on a space of continuous functions
    • CAMERON, R. H. and GRAVES, R. E. (1951). Additive functionals on a space of continuous functions. Trans. Amer. Math. Soc. 70 160-176.
    • (1951) Trans. Amer. Math. Soc. , vol.70 , pp. 160-176
    • Cameron, R.H.1    Graves, R.E.2
  • 4
    • 84966244434 scopus 로고
    • Quadratic zero-one laws for gaussian measures and the distribution of quadratic forms
    • DE ACOSTA, A. (1976). Quadratic zero-one laws for Gaussian measures and the distribution of quadratic forms. Proc. Amer. Math. Soc. 54 319-325.
    • (1976) Proc. Amer. Math. Soc. , vol.54 , pp. 319-325
    • De Acosta, A.1
  • 5
    • 84966233119 scopus 로고
    • Zero-one laws for stable measures
    • DUDLEY, R. M. and KANTER, M. (1974). Zero-one laws for stable measures. Proc. Amer. Math. Soc. 45 245-252.
    • (1974) Proc. Amer. Math. Soc. , vol.45 , pp. 245-252
    • Dudley, R.M.1    Kanter, M.2
  • 6
    • 0040305442 scopus 로고
    • Une démonstration simple du théorème de R. M. Dudley et M. Kanter sur les loi 0-1 pour les mesures stables
    • Springer, Berlin
    • FERNIQUE, X. (1974). Une démonstration simple du théorème de R. M. Dudley et M. Kanter sur les loi 0-1 pour les mesures stables. Lecture Notes in Math. 381 78-79. Springer, Berlin.
    • (1974) Lecture Notes in Math. , vol.381 , pp. 78-79
    • Fernique, X.1
  • 7
    • 0039121478 scopus 로고
    • A zero-one law for Gaussian processes
    • JAIN, N. C. (1971). A zero-one law for Gaussian processes. Proc. Amer. Math. Soc. 29 585-587.
    • (1971) Proc. Amer. Math. Soc. , vol.29 , pp. 585-587
    • Jain, N.C.1
  • 8
    • 0039121473 scopus 로고
    • A survey about zero-one laws for probability measures on linear spaces and locally compact groups
    • Springer, Berlin
    • JANSSEN, A. (1984). A survey about zero-one laws for probability measures on linear spaces and locally compact groups. Lecture Notes in Math. 1064 551-553. Springer, Berlin.
    • (1984) Lecture Notes in Math. , vol.1064 , pp. 551-553
    • Janssen, A.1
  • 9
    • 84966200180 scopus 로고
    • Zero-one laws for Gaussian processes
    • KALLIANPUR, G. (1970). Zero-one laws for Gaussian processes. Trans. Amer. Math. Soc. 149 199-211.
    • (1970) Trans. Amer. Math. Soc. , vol.149 , pp. 199-211
    • Kallianpur, G.1
  • 10
    • 0016963305 scopus 로고
    • Probability inequalities for convex sets
    • KANTER, M. (1976). Probability inequalities for convex sets. J. Multivariate Anal. 6 222-236.
    • (1976) J. Multivariate Anal. , vol.6 , pp. 222-236
    • Kanter, M.1
  • 11
    • 0011554924 scopus 로고
    • Multidimensional infinitely divisible variables and processes. II
    • Springer, Berlin
    • LEPAGE, R. (1980). Multidimensional infinitely divisible variables and processes. II. Lecture Notes in Math. 860 279-284. Springer, Berlin.
    • (1980) Lecture Notes in Math. , vol.860 , pp. 279-284
    • LePage, R.1
  • 12
    • 0040305444 scopus 로고
    • A zero-one dichotomy theorem for r-semistable laws on infinite dimensional linear spaces
    • LOUIE, D., RAJPUT, B. and TORTRAT, A. (1980). A zero-one dichotomy theorem for r-semistable laws on infinite dimensional linear spaces. Sankhyā Ser. A 42 9-18.
    • (1980) Sankhyā Ser. A , vol.42 , pp. 9-18
    • Louie, D.1    Rajput, B.2    Tortrat, A.3
  • 13
    • 0001294305 scopus 로고
    • Spectral representations of infinitely divisible processes
    • RAJPUT, B. and ROSIŃSKI, J. (1989). Spectral representations of infinitely divisible processes. Probab. Theory Related Fields 82 451-488.
    • (1989) Probab. Theory Related Fields , vol.82 , pp. 451-488
    • Rajput, B.1    Rosiński, J.2
  • 14
    • 4244120980 scopus 로고
    • An application of series representations to zero-one laws for infinitely divisible random vectors
    • J. Kuelbs, E. Eberlein and M. B. Marcus, eds.. Birkhäuser, Boston
    • ROSIŃSKI, J. (1990a). An application of series representations to zero-one laws for infinitely divisible random vectors. In Probability in Banach Spaces 7 (J. Kuelbs, E. Eberlein and M. B. Marcus, eds.). Birkhäuser, Boston.
    • (1990) Probability in Banach Spaces 7
    • Rosiński, J.1
  • 15
    • 0001767350 scopus 로고
    • On series representation of infinitely divisible random vectors
    • ROSIŃSKI, J. (1990b). On series representation of infinitely divisible random vectors. Ann. Probab. 18 405-430.
    • (1990) Ann. Probab. , vol.18 , pp. 405-430
    • Rosiński, J.1
  • 17
    • 0039121471 scopus 로고
    • Zero-one laws for multilinear forms in Gaussian and other infinitely divisible random variables
    • ROSIŃSKI, J., SAMORODNITSKY, G. and TAQQU, M. S. (1993). Zero-one laws for multilinear forms in Gaussian and other infinitely divisible random variables. J. Multivariate Anal. 46 61-82.
    • (1993) J. Multivariate Anal. , vol.46 , pp. 61-82
    • Rosiński, J.1    Samorodnitsky, G.2    Taqqu, M.S.3
  • 18
    • 0001169016 scopus 로고
    • An asymptotic evaluation of the tail of a multiple symmetric α-stable integral
    • SAMORODNITSKY, G. and SZULGA, J. (1989). An asymptotic evaluation of the tail of a multiple symmetric α-stable integral. Ann. Probab. 17 1503-1520.
    • (1989) Ann. Probab. , vol.17 , pp. 1503-1520
    • Samorodnitsky, G.1    Szulga, J.2
  • 19
    • 34249838726 scopus 로고
    • Series expansions of multiple stochastic integrals
    • To appear
    • SZULGA, J. (1992). Series expansions of multiple stochastic integrals. J. Theoret. Probab. To appear.
    • (1992) J. Theoret. Probab
    • Szulga, J.1
  • 20
    • 0039121474 scopus 로고
    • Lois de zéro-un pour des probabilités semi-stables ou plus générales, dans un espace vectoriel ou un groupe (abélien ou non)
    • Publication du C.N.R.S.
    • TORTRAT, A. (1980). Lois de zéro-un pour des probabilités semi-stables ou plus générales, dans un espace vectoriel ou un groupe (abélien ou non). In Colloque de Saint-Flour, Publication du C.N.R.S.
    • (1980) Colloque de Saint-Flour
    • Tortrat, A.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.