-
1
-
-
0042245029
-
Zero-one laws for semigroups of measures on groups
-
S. Cambanis, J. K. Ghosh, R. L. Karandikar and P. K. Sen, eds. Springer, New York
-
BYCZKOWSKI, T. and RAJPUT, B. (1983). Zero-one laws for semigroups of measures on groups. In Stochastic Processes, A Festschrift in Honour of Gopinath Kallianpur (S. Cambanis, J. K. Ghosh, R. L. Karandikar and P. K. Sen, eds.) 23-30. Springer, New York.
-
(1983)
Stochastic Processes, A Festschrift in Honour of Gopinath Kallianpur
, pp. 23-30
-
-
Byczkowski, T.1
Rajput, B.2
-
2
-
-
84966205669
-
Additive functionals on a space of continuous functions
-
CAMERON, R. H. and GRAVES, R. E. (1951). Additive functionals on a space of continuous functions. Trans. Amer. Math. Soc. 70 160-176.
-
(1951)
Trans. Amer. Math. Soc.
, vol.70
, pp. 160-176
-
-
Cameron, R.H.1
Graves, R.E.2
-
4
-
-
84966244434
-
Quadratic zero-one laws for gaussian measures and the distribution of quadratic forms
-
DE ACOSTA, A. (1976). Quadratic zero-one laws for Gaussian measures and the distribution of quadratic forms. Proc. Amer. Math. Soc. 54 319-325.
-
(1976)
Proc. Amer. Math. Soc.
, vol.54
, pp. 319-325
-
-
De Acosta, A.1
-
5
-
-
84966233119
-
Zero-one laws for stable measures
-
DUDLEY, R. M. and KANTER, M. (1974). Zero-one laws for stable measures. Proc. Amer. Math. Soc. 45 245-252.
-
(1974)
Proc. Amer. Math. Soc.
, vol.45
, pp. 245-252
-
-
Dudley, R.M.1
Kanter, M.2
-
6
-
-
0040305442
-
Une démonstration simple du théorème de R. M. Dudley et M. Kanter sur les loi 0-1 pour les mesures stables
-
Springer, Berlin
-
FERNIQUE, X. (1974). Une démonstration simple du théorème de R. M. Dudley et M. Kanter sur les loi 0-1 pour les mesures stables. Lecture Notes in Math. 381 78-79. Springer, Berlin.
-
(1974)
Lecture Notes in Math.
, vol.381
, pp. 78-79
-
-
Fernique, X.1
-
7
-
-
0039121478
-
A zero-one law for Gaussian processes
-
JAIN, N. C. (1971). A zero-one law for Gaussian processes. Proc. Amer. Math. Soc. 29 585-587.
-
(1971)
Proc. Amer. Math. Soc.
, vol.29
, pp. 585-587
-
-
Jain, N.C.1
-
8
-
-
0039121473
-
A survey about zero-one laws for probability measures on linear spaces and locally compact groups
-
Springer, Berlin
-
JANSSEN, A. (1984). A survey about zero-one laws for probability measures on linear spaces and locally compact groups. Lecture Notes in Math. 1064 551-553. Springer, Berlin.
-
(1984)
Lecture Notes in Math.
, vol.1064
, pp. 551-553
-
-
Janssen, A.1
-
9
-
-
84966200180
-
Zero-one laws for Gaussian processes
-
KALLIANPUR, G. (1970). Zero-one laws for Gaussian processes. Trans. Amer. Math. Soc. 149 199-211.
-
(1970)
Trans. Amer. Math. Soc.
, vol.149
, pp. 199-211
-
-
Kallianpur, G.1
-
10
-
-
0016963305
-
Probability inequalities for convex sets
-
KANTER, M. (1976). Probability inequalities for convex sets. J. Multivariate Anal. 6 222-236.
-
(1976)
J. Multivariate Anal.
, vol.6
, pp. 222-236
-
-
Kanter, M.1
-
11
-
-
0011554924
-
Multidimensional infinitely divisible variables and processes. II
-
Springer, Berlin
-
LEPAGE, R. (1980). Multidimensional infinitely divisible variables and processes. II. Lecture Notes in Math. 860 279-284. Springer, Berlin.
-
(1980)
Lecture Notes in Math.
, vol.860
, pp. 279-284
-
-
LePage, R.1
-
12
-
-
0040305444
-
A zero-one dichotomy theorem for r-semistable laws on infinite dimensional linear spaces
-
LOUIE, D., RAJPUT, B. and TORTRAT, A. (1980). A zero-one dichotomy theorem for r-semistable laws on infinite dimensional linear spaces. Sankhyā Ser. A 42 9-18.
-
(1980)
Sankhyā Ser. A
, vol.42
, pp. 9-18
-
-
Louie, D.1
Rajput, B.2
Tortrat, A.3
-
13
-
-
0001294305
-
Spectral representations of infinitely divisible processes
-
RAJPUT, B. and ROSIŃSKI, J. (1989). Spectral representations of infinitely divisible processes. Probab. Theory Related Fields 82 451-488.
-
(1989)
Probab. Theory Related Fields
, vol.82
, pp. 451-488
-
-
Rajput, B.1
Rosiński, J.2
-
14
-
-
4244120980
-
An application of series representations to zero-one laws for infinitely divisible random vectors
-
J. Kuelbs, E. Eberlein and M. B. Marcus, eds.. Birkhäuser, Boston
-
ROSIŃSKI, J. (1990a). An application of series representations to zero-one laws for infinitely divisible random vectors. In Probability in Banach Spaces 7 (J. Kuelbs, E. Eberlein and M. B. Marcus, eds.). Birkhäuser, Boston.
-
(1990)
Probability in Banach Spaces 7
-
-
Rosiński, J.1
-
15
-
-
0001767350
-
On series representation of infinitely divisible random vectors
-
ROSIŃSKI, J. (1990b). On series representation of infinitely divisible random vectors. Ann. Probab. 18 405-430.
-
(1990)
Ann. Probab.
, vol.18
, pp. 405-430
-
-
Rosiński, J.1
-
16
-
-
0040305445
-
Zero-one laws for multiple stochastic integrals
-
C. Houdré and V. Pérez-Abreu, eds. CRC Press, Boca Raton
-
ROSIŃSKI, J. and SAMORODNITSKY, G. (1994). Zero-one laws for multiple stochastic integrals. In Chaos Expansions, Multiple Wiener-Itô Integrals and Their Applications (C. Houdré and V. Pérez-Abreu, eds.) 233-259. CRC Press, Boca Raton.
-
(1994)
Chaos Expansions, Multiple Wiener-itô Integrals and Their Applications
, pp. 233-259
-
-
Rosiński, J.1
Samorodnitsky, G.2
-
17
-
-
0039121471
-
Zero-one laws for multilinear forms in Gaussian and other infinitely divisible random variables
-
ROSIŃSKI, J., SAMORODNITSKY, G. and TAQQU, M. S. (1993). Zero-one laws for multilinear forms in Gaussian and other infinitely divisible random variables. J. Multivariate Anal. 46 61-82.
-
(1993)
J. Multivariate Anal.
, vol.46
, pp. 61-82
-
-
Rosiński, J.1
Samorodnitsky, G.2
Taqqu, M.S.3
-
18
-
-
0001169016
-
An asymptotic evaluation of the tail of a multiple symmetric α-stable integral
-
SAMORODNITSKY, G. and SZULGA, J. (1989). An asymptotic evaluation of the tail of a multiple symmetric α-stable integral. Ann. Probab. 17 1503-1520.
-
(1989)
Ann. Probab.
, vol.17
, pp. 1503-1520
-
-
Samorodnitsky, G.1
Szulga, J.2
-
19
-
-
34249838726
-
Series expansions of multiple stochastic integrals
-
To appear
-
SZULGA, J. (1992). Series expansions of multiple stochastic integrals. J. Theoret. Probab. To appear.
-
(1992)
J. Theoret. Probab
-
-
Szulga, J.1
-
20
-
-
0039121474
-
Lois de zéro-un pour des probabilités semi-stables ou plus générales, dans un espace vectoriel ou un groupe (abélien ou non)
-
Publication du C.N.R.S.
-
TORTRAT, A. (1980). Lois de zéro-un pour des probabilités semi-stables ou plus générales, dans un espace vectoriel ou un groupe (abélien ou non). In Colloque de Saint-Flour, Publication du C.N.R.S.
-
(1980)
Colloque de Saint-Flour
-
-
Tortrat, A.1
|