메뉴 건너뛰기




Volumn 198, Issue , 1999, Pages 131-148

Inertia theorems for Hilbert space operators based on Lyapunov and Stein equations

Author keywords

Almost exact controllability; Inertia; Operator equations; Spectrum l calization

Indexed keywords


EID: 0039521405     PISSN: 0025584X     EISSN: None     Source Type: Journal    
DOI: 10.1002/mana.19991980107     Document Type: Article
Times cited : (1)

References (17)
  • 1
    • 38249028999 scopus 로고
    • Inertia and controllability in infinite dimensions
    • BUNCE, J. W.: Inertia and Controllability in Infinite Dimensions, J. Math. Anal. Appl. 129 (1988), 569-580
    • (1988) J. Math. Anal. Appl. , vol.129 , pp. 569-580
    • Bunce, J.W.1
  • 3
    • 0039923669 scopus 로고
    • On ranges of Lyapunov transformations
    • CARLSON, D. H., and LOEWY, R.: On Ranges of Lyapunov Transformations, Linear Algebra and Appl. 8 (1974), 237-248
    • (1974) Linear Algebra and Appl. , vol.8 , pp. 237-248
    • Carlson, D.H.1    Loewy, R.2
  • 4
    • 0040202766 scopus 로고
    • Inertia theorem for matrices: The semidefinite case
    • CARLSON, D. H., and SCHNEIDER, H.: Inertia Theorem for Matrices: The Semidefinite Case, Bull. Amer. Math. Soc. 68 (1962), 479-483
    • (1962) Bull. Amer. Math. Soc. , vol.68 , pp. 479-483
    • Carlson, D.H.1    Schneider, H.2
  • 5
    • 0001976565 scopus 로고
    • A generalization of the inertia theorem
    • CHEN, C. T.: A Generalization of the Inertia Theorem, SIAM J. Appl. Math. 25 (1973), 158-161
    • (1973) SIAM J. Appl. Math. , vol.25 , pp. 158-161
    • Chen, C.T.1
  • 6
    • 0003254098 scopus 로고
    • Stability of solutions of differential equations in Banach space
    • AMS, Providence, R. I.
    • DALECKII, JU. L., and KREIN, M. G.: Stability of Solutions of Differential Equations in Banach Space, Transl. of Math. Monograph, Vol. 43, AMS, Providence, R. I., 1974
    • (1974) Transl. of Math. Monograph , vol.43
    • Daleckii, Ju.L.1    Krein, M.G.2
  • 7
    • 84968496765 scopus 로고
    • On majorization, factorization, and range inclusion of operators on Hilbert space
    • DOUGLAS, R. G.: On Majorization, Factorization, and Range Inclusion of Operators on Hilbert Space, Proc. Amer. Math. Soc. 17 (1966), 413-415
    • (1966) Proc. Amer. Math. Soc. , vol.17 , pp. 413-415
    • Douglas, R.G.1
  • 9
    • 0039611105 scopus 로고
    • Analytic operator functions with compact spectrum, III. Hilbert space case: Inverse problems and applications
    • KAASHOEK, M. A., VAN DER MEE, C. V. M., and RODMAN, L.: Analytic Operator Functions with Compact Spectrum, III. Hilbert Space Case: Inverse Problems and Applications, J. of Operator Theory 10 (1983), 219-250
    • (1983) J. of Operator Theory , vol.10 , pp. 219-250
    • Kaashoek, M.A.1    Van Der Mee, C.V.M.2    Rodman, L.3
  • 12
    • 17144471560 scopus 로고    scopus 로고
    • An inertia theorem for Lyapunov's equation and the dimension of a controllability space
    • LOEWY, R.: An Inertia Theorem for Lyapunov's Equation and the Dimension of a Controllability Space, Linear Algebra and Appl. 260 (1997), 1-7
    • (1997) Linear Algebra and Appl. , vol.260 , pp. 1-7
    • Loewy, R.1
  • 13
    • 0002835644 scopus 로고
    • Some theorems on the inertia of general matrices
    • OSTROWSKY, A., and SCHNEIDER, H.: Some Theorems on the Inertia of General Matrices, J. Math. Anal. Appl. 4 (1962), 72-84
    • (1962) J. Math. Anal. Appl. , vol.4 , pp. 72-84
    • Ostrowsky, A.1    Schneider, H.2
  • 15
    • 0012699568 scopus 로고
    • On nonnegative solutions of the equation AD + DA′ = -C
    • SNYDERS, J., and ZAKAI, M.: On Nonnegative Solutions of the Equation AD + DA′ = -C, SIAM J. Appl. Math. 18 (1970), 704-714
    • (1970) SIAM J. Appl. Math. , vol.18 , pp. 704-714
    • Snyders, J.1    Zakai, M.2
  • 16
    • 0038881931 scopus 로고
    • A generalization of a theorem by Lyapunov
    • TAUSSKY, O.: A Generalization of a Theorem by Lyapunov, J. Soc. Indust. Appl. Math. 9 (1961), 640-643
    • (1961) J. Soc. Indust. Appl. Math. , vol.9 , pp. 640-643
    • Taussky, O.1
  • 17
    • 0000627339 scopus 로고
    • Inertia theorems for matrices, controllability, and linear vibrations
    • WIMMER, H. K.: Inertia Theorems for Matrices, Controllability, and Linear Vibrations, Linear Algebra and Appl. 8 (1974), 337-343
    • (1974) Linear Algebra and Appl. , vol.8 , pp. 337-343
    • Wimmer, H.K.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.