-
1
-
-
0001553201
-
Chaotic neural networks
-
Aihara, K., Takabe, T. & Toyoda, M. [1990] "Chaotic neural networks," Phys. Lett. A144(6,7), 333-340.
-
(1990)
Phys. Lett.
, vol.A144
, Issue.6-7
, pp. 333-340
-
-
Aihara, K.1
Takabe, T.2
Toyoda, M.3
-
2
-
-
84961242362
-
Discussion on the spectral analysis of point process
-
by M. S. Bartlett
-
Barnard, G. A. [1968] "Discussion on the spectral analysis of point process," (by M. S. Bartlett), J. R. Stat. Soc. B25.
-
(1968)
J. R. Stat. Soc.
, vol.B25
-
-
Barnard, G.A.1
-
3
-
-
0000202504
-
Chaos and deterministic versus stochastic nonlinear modelling
-
Casdagli, M. [1992] "Chaos and deterministic versus stochastic nonlinear modelling," J. of the Royal Stat. Soc. B54(2), 303-328.
-
(1992)
J. of the Royal Stat. Soc.
, vol.B54
, Issue.2
, pp. 303-328
-
-
Casdagli, M.1
-
4
-
-
0028094590
-
Stochastic versus deterministic variability in simple neuronal circuits: I. Monosynaptic spinal cord reflexes
-
Chang, T., Schiff, S. J., Sauer, T., Gossard, J.-P. & Burke, R. E. [1994] " Stochastic versus deterministic variability in simple neuronal circuits: I. Monosynaptic spinal cord reflexes," Biophysical J. 67, 671-683.
-
(1994)
Biophysical J.
, vol.67
, pp. 671-683
-
-
Chang, T.1
Schiff, S.J.2
Sauer, T.3
Gossard, J.-P.4
Burke, R.E.5
-
5
-
-
0000795447
-
Tests for nonlinearity in short stationary time series
-
Chang, T., Sauer, T. & Schiff, S. J. [1995] "Tests for nonlinearity in short stationary time series," Chaos 5(1), 118-126.
-
(1995)
Chaos
, vol.5
, Issue.1
, pp. 118-126
-
-
Chang, T.1
Sauer, T.2
Schiff, S.J.3
-
6
-
-
6444240297
-
Liapunov exponents from time series
-
Eckmann, J. P., Kamphorst, S. O., Ruelle, D. & Ciliberto, S. [1986] "Liapunov exponents from time series," Phys. Rev. A34(6), 4971-4979.
-
(1986)
Phys. Rev.
, vol.A34
, Issue.6
, pp. 4971-4979
-
-
Eckmann, J.P.1
Kamphorst, S.O.2
Ruelle, D.3
Ciliberto, S.4
-
7
-
-
44049117207
-
Fundamental limitations for estimating dimensions and Lyapunov exponents in dynamical systems
-
Eckmann, J. P. & Ruelle, D. [1992] "Fundamental limitations for estimating dimensions and Lyapunov exponents in dynamical systems," Physica D56, 185-187.
-
(1992)
Physica
, vol.D56
, pp. 185-187
-
-
Eckmann, J.P.1
Ruelle, D.2
-
8
-
-
40749093037
-
Measuring the strangeness of strange attractors
-
Grassberger, P. & Procaccia I. [1983] "Measuring the strangeness of strange attractors," Physica D9, 189-208.
-
(1983)
Physica
, vol.D9
, pp. 189-208
-
-
Grassberger, P.1
Procaccia, I.2
-
9
-
-
0002591468
-
A two-dimensional mapping with a strange attractor
-
Hénon, M. [1976] "A two-dimensional mapping with a strange attractor," Commun. in Math. Phys. 50, 69-77.
-
(1976)
Commun. in Math. Phys.
, vol.50
, pp. 69-77
-
-
Hénon, M.1
-
10
-
-
0002002528
-
A simplified Monte Carlo significance test procedure
-
Hope, A. C. A. [1968] "A simplified Monte Carlo significance test procedure," J. R. Stat. Soc. B30, 582-598.
-
(1968)
J. R. Stat. Soc.
, vol.B30
, pp. 582-598
-
-
Hope, A.C.A.1
-
11
-
-
0039826453
-
Local versus global plots on Lyapunov exponents
-
Ikeguchi, T. & K. Aihara [1996] "Local versus global plots on Lyapunov exponents," IEICE Technical Reports, 96(477), 97-104.
-
(1996)
IEICE Technical Reports
, vol.96
, Issue.477
, pp. 97-104
-
-
Ikeguchi, T.1
Aihara, K.2
-
12
-
-
0001870258
-
A robust method to estimate the maximal Lyapunov exponent of a time series
-
Kantz, H. [1994] "A robust method to estimate the maximal Lyapunov exponent of a time series," Phys. Lett. A185 77-87.
-
(1994)
Phys. Lett.
, vol.A185
, pp. 77-87
-
-
Kantz, H.1
-
13
-
-
0001640825
-
Chaotic behavior of multidimensional difference equations
-
eds. Peitgen, H. O. & Walther, H. O. (Springer-Verlag, Berlin)
-
Kaplan, J. L. & Yorke, J. A. [1979] "Chaotic behavior of multidimensional difference equations," in Functional Differential Equations and Approximations of Fixed Points, eds. Peitgen, H. O. & Walther, H. O. (Springer-Verlag, Berlin), 204-227.
-
(1979)
Functional Differential Equations and Approximations of Fixed Points
, pp. 204-227
-
-
Kaplan, J.L.1
Yorke, J.A.2
-
14
-
-
0020850180
-
Dimension of strange attracors: An experimental determination for the chaotic regime of two convective systems
-
Malraison, B., Atten, P. & Dubois, M. [1983] "Dimension of strange attracors: An experimental determination for the chaotic regime of two convective systems," J. Physique Lett. 44, L-897-L-902.
-
(1983)
J. Physique Lett.
, vol.44
-
-
Malraison, B.1
Atten, P.2
Dubois, M.3
-
15
-
-
0000785387
-
Filtered noise can mimic low-dimensional chaotic attractors
-
Rapp, P. E., Albano, A. M., Schmah, T. I. & Farwell, L. A. [1993] "Filtered noise can mimic low-dimensional chaotic attractors," Phys. Rev. E47(4), 2289-2297.
-
(1993)
Phys. Rev.
, vol.E47
, Issue.4
, pp. 2289-2297
-
-
Rapp, P.E.1
Albano, A.M.2
Schmah, T.I.3
Farwell, L.A.4
-
16
-
-
0002516341
-
Phase-randomized surrogates can produce spurious identifications of non-random structure
-
Rapp, P. E., Albano, A. M., Zimmerman, I. D. & Jiménrez-Montaño, M. A. [1994] "Phase-randomized surrogates can produce spurious identifications of non-random structure," Phys. Lett. A192, 27-33.
-
(1994)
Phys. Lett.
, vol.A192
, pp. 27-33
-
-
Rapp, P.E.1
Albano, A.M.2
Zimmerman, I.D.3
Jiménrez-Montaño, M.A.4
-
17
-
-
43949166788
-
A practical method for calculating largest Lyaup. Nov exponents from small data sets
-
Rosenstein, M. T., Collins, J. J. & Luca, C. J. D. [1993] "A practical method for calculating largest Lyaup. nov exponents from small data sets," Physica D65 117-134.
-
(1993)
Physica
, vol.D65
, pp. 117-134
-
-
Rosenstein, M.T.1
Collins, J.J.2
Luca, C.J.D.3
-
18
-
-
0001394076
-
Measurement of the Lyapunov spectrum from a chaotic time series
-
Sano, M. & Sawada, Y. [1985] "Measurement of the Lyapunov spectrum from a chaotic time series," Phys. Rev. Lett. 55(10), 1082-1085.
-
(1985)
Phys. Rev. Lett.
, vol.55
, Issue.10
, pp. 1082-1085
-
-
Sano, M.1
Sawada, Y.2
-
19
-
-
0002438422
-
Practical methods of measuring the generalized dimension and the largest Lyapunov exponent in high dimensional chaotic systems
-
Sato, S., Sano. M. & Sawada, Y. [1987] "Practical methods of measuring the generalized dimension and the largest Lyapunov exponent in high dimensional chaotic systems," Prog. Theor. Phys. 77(1), 1-5.
-
(1987)
Prog. Theor. Phys.
, vol.77
, Issue.1
, pp. 1-5
-
-
Sato, S.1
Sano, M.2
Sawada, Y.3
-
20
-
-
44049111332
-
Testing for nonlinearity in time series: The method of surrogate data
-
Theiler, J., Eubank, S., Lonting, A., Galdrikian, B. & Farmer, J. D. [1992] "Testing for nonlinearity in time series: The method of surrogate data," Physica D58 77-94.
-
(1992)
Physica
, vol.D58
, pp. 77-94
-
-
Theiler, J.1
Eubank, S.2
Lonting, A.3
Galdrikian, B.4
Farmer, J.D.5
-
21
-
-
22244449004
-
Constrained-realization Monte-Carlo method for hypothesis testing
-
Theiler, J. & Prichard, D. [1996] "Constrained-realization Monte-Carlo method for hypothesis testing," Physica D94, 221-235.
-
(1996)
Physica
, vol.D94
, pp. 221-235
-
-
Theiler, J.1
Prichard, D.2
-
22
-
-
0008494528
-
Determining Lyapunov exponents from a time series
-
Wolf, A., Swift, J. B., Swinney, H. L. & Vastano, J. A. [1985] "Determining Lyapunov exponents from a time series," Physica D16, 285-317.
-
(1985)
Physica
, vol.D16
, pp. 285-317
-
-
Wolf, A.1
Swift, J.B.2
Swinney, H.L.3
Vastano, J.A.4
|