-
2
-
-
6144229366
-
From attractor to chaotic saddle: A tale of transverse instability
-
P. Ashwin, J. Buescu, and I. Stewart. From attractor to chaotic saddle: A tale of transverse instability. Nonlinearity 9:703-737 (1996).
-
(1996)
Nonlinearity
, vol.9
, pp. 703-737
-
-
Ashwin, P.1
Buescu, J.2
Stewart, I.3
-
3
-
-
0011289134
-
Heteroclinic networks on the tetrahedron
-
W. Brannath. Heteroclinic networks on the tetrahedron. Nonlinearity 7:1367-1384 (1994).
-
(1994)
Nonlinearity
, vol.7
, pp. 1367-1384
-
-
Brannath, W.1
-
4
-
-
0002274348
-
Nonstationary convection in a rotating system
-
U. Müller, K. Roessner, and B. Schmidt (Eds), Springer-Verlag, Berlin
-
F.M. Busse and R.M. Clever. Nonstationary convection in a rotating system. In U. Müller, K. Roessner, and B. Schmidt (Eds), Recent Developments in Theoretical and Experimental Fluid Dynamics, pp 376-385, Springer-Verlag, Berlin (1979).
-
(1979)
Recent Developments in Theoretical and Experimental Fluid Dynamics
, pp. 376-385
-
-
Busse, F.M.1
Clever, R.M.2
-
5
-
-
0003411523
-
-
Grundlehren der mathematischen Wissenschaft Springer-Verlag, Berlin
-
I.P. Cornfeld, S.V. Fomin, and Ya.G. Sinai. Ergodic Theory. Grundlehren der mathematischen Wissenschaft 245, Springer-Verlag, Berlin (1982).
-
(1982)
Ergodic Theory
, vol.245
-
-
Cornfeld, I.P.1
Fomin, S.V.2
Sinai, Ya.G.3
-
6
-
-
84968484325
-
Transversality in G-manifolds
-
M.J. Field. Transversality in G-manifolds. Trans. Am. Math. Soc. 231:429-450 (1977).
-
(1977)
Trans. Am. Math. Soc.
, vol.231
, pp. 429-450
-
-
Field, M.J.1
-
7
-
-
84967792016
-
Equivariant dynamical systems
-
M.J. Field. Equivariant dynamical systems. Trans. Am. Math. Soc. 259:185-205 (1980).
-
(1980)
Trans. Am. Math. Soc.
, vol.259
, pp. 185-205
-
-
Field, M.J.1
-
8
-
-
0011573219
-
Equivariant dynamics
-
M.J. Field. Equivariant dynamics. Contemp. Math. 56:69-95 (1986).
-
(1986)
Contemp. Math.
, vol.56
, pp. 69-95
-
-
Field, M.J.1
-
9
-
-
85000251993
-
Geometric methods in bifurcation theory
-
W.F. Langford and W. Nagata (Eds), Fields Institute Communications, AMS, Provence, RI
-
M. Field. Geometric methods in bifurcation theory. In W.F. Langford and W. Nagata (Eds), Normal Forms and Homoclinic Chaos, Fields Institute Communications, AMS, Provence, RI (1995).
-
(1995)
Normal Forms and Homoclinic Chaos
-
-
Field, M.1
-
10
-
-
0003147711
-
Groups and Singularities in Bifurcation Theory. Volume 2
-
Springer-Verlag, New York
-
M. Golubitsky, I. N. Stewart, and D. Schaeffer. Groups and Singularities in Bifurcation Theory. Volume 2. Appl. Math. Sci. 69, Springer-Verlag, New York (1988).
-
(1988)
Appl. Math. Sci.
, vol.69
-
-
Golubitsky, M.1
Stewart, I.N.2
Schaeffer, D.3
-
11
-
-
0002151666
-
Coupled cells, wreath products and direct products
-
P. Chossat (Ed.), Cargèse
-
M. Golubitsky, B. Dionne, and I. Stewart. Coupled cells, wreath products and direct products. In P. Chossat (Ed.), proceedings Dynamics, Bifurcation and Symmetry, Cargèse, pp 127-138 (1994).
-
(1994)
Proceedings Dynamics, Bifurcation and Symmetry
, pp. 127-138
-
-
Golubitsky, M.1
Dionne, B.2
Stewart, I.3
-
14
-
-
0003841625
-
-
Center for Applied Mathematics, Cornell University
-
J. Guckenheimer, M.R. Myers, F.J. Wicklin, and P.A. Worfolk. Dstool: A Dynamical Systems Toolkit with an Interactive Graphical Interface. User's Manual, Center for Applied Mathematics, Cornell University (1991).
-
(1991)
Dstool: A Dynamical Systems Toolkit with an Interactive Graphical Interface. User's Manual
-
-
Guckenheimer, J.1
Myers, M.R.2
Wicklin, F.J.3
Worfolk, P.A.4
-
15
-
-
22244472608
-
A competition between heteroclinic cycles
-
V. Kirk and M. Silber. A competition between heteroclinic cycles. Nonlinearity 7:1605-1621 (1994).
-
(1994)
Nonlinearity
, vol.7
, pp. 1605-1621
-
-
Kirk, V.1
Silber, M.2
-
17
-
-
84974489205
-
Asymptotic stability of heteroclinic cycles in systems with symmetry
-
M. Krupa and I. Melbourne. Asymptotic stability of heteroclinic cycles in systems with symmetry. Ergod. Th. & Dyn. Sys. 15:121-147 (1995).
-
(1995)
Ergod. Th. & Dyn. Sys.
, vol.15
, pp. 121-147
-
-
Krupa, M.1
Melbourne, I.2
-
18
-
-
0038889885
-
Nonasymptotically stable attractors in O (2) mode interactions
-
W.F. Langford and W. Nagata (Eds.), Fields Institute Communications, AMS
-
M. Krupa and I. Melbourne. Nonasymptotically stable attractors in O (2) mode interactions. In W.F. Langford and W. Nagata (Eds.), Normal Forms and Homoclinic Chaos, Fields Institute Communications, AMS (1995).
-
(1995)
Normal Forms and Homoclinic Chaos
-
-
Krupa, M.1
Melbourne, I.2
-
19
-
-
0000301793
-
An example of a nonasymptotically stable attractor
-
I. Melbourne. An example of a nonasymptotically stable attractor. Nonlinearity 4:835-844 (1991).
-
(1991)
Nonlinearity
, vol.4
, pp. 835-844
-
-
Melbourne, I.1
-
20
-
-
85033933450
-
-
University of Warwick, Mathematics Institute preprint 4
-
0 Abelian. University of Warwick, Mathematics Institute preprint 4/1995.
-
(1995)
0 Abelian
-
-
Melbourne, I.1
Stewart, I.2
-
21
-
-
34250112778
-
On the concept of attractor
-
J. Milnor. On the concept of attractor. Commun. Math. Phys. 99:177-195 (1985). Comments: Commun. Math. Phys. 102:517-519 (1985).
-
(1985)
Commun. Math. Phys.
, vol.99
, pp. 177-195
-
-
Milnor, J.1
-
22
-
-
0001996785
-
-
J. Milnor. On the concept of attractor. Commun. Math. Phys. 99:177-195 (1985). Comments: Commun. Math. Phys. 102:517-519 (1985).
-
(1985)
Commun. Math. Phys.
, vol.102
, pp. 517-519
-
-
-
23
-
-
84967728378
-
Structural stability of equivariant vector fields on two-manifolds
-
G.L. dos Reis. Structural stability of equivariant vector fields on two-manifolds. Trans. Am. Math. Soc. 283:633-642 (1984).
-
(1984)
Trans. Am. Math. Soc.
, vol.283
, pp. 633-642
-
-
Dos Reis, G.L.1
-
24
-
-
0002696904
-
Chaos in the Hopf bifurcation with tetrahedral symmetry: Convection in a rotating fluid with low Prandtl number
-
J.W. Swift and E. Barany. Chaos in the Hopf bifurcation with tetrahedral symmetry: Convection in a rotating fluid with low Prandtl number. Eur. J. Mech. B/Fluids 10(2-suppl.):99-104 (1991).
-
(1991)
Eur. J. Mech. B/Fluids
, vol.10
, Issue.2 SUPPL.
, pp. 99-104
-
-
Swift, J.W.1
Barany, E.2
|