-
1
-
-
33745014742
-
On the quantum correction for thermodynamic equilibrium
-
E. Wigner, “On the quantum correction for thermodynamic equilibrium,”Phys. Rev. 40, 749-759 (1932).
-
(1932)
Phys. Rev.
, vol.40
, pp. 749-759
-
-
Wigner, E.1
-
2
-
-
85010130011
-
Wigner distribution function and its applications to first-order optics
-
M. J. Bastiaans, “Wigner distribution function and its applications to first-order optics,” J. Opt. Soc. Am. 69, 1710-1716 (1979).
-
(1979)
J. Opt. Soc. Am.
, vol.69
, pp. 1710-1716
-
-
Bastiaans, M.J.1
-
3
-
-
84867571153
-
Applications of the Wigner distribution function to partially coherent light
-
M. J. Bastiaans, “Applications of the Wigner distribution function to partially coherent light,” J. Opt. Soc. Am. A 3, 1227-1237 (1986).
-
(1986)
J. Opt. Soc. Am. A
, vol.3
, pp. 1227-1237
-
-
Bastiaans, M.J.1
-
4
-
-
0027544366
-
Invariance properties of general astigmatic beams through first-order optical systems
-
D. Onciul, “Invariance properties of general astigmatic beams through first-order optical systems,” J. Opt. Soc. Am. A 10, 295-298 (1993).
-
(1993)
J. Opt. Soc. Am. A
, vol.10
, pp. 295-298
-
-
Onciul, D.1
-
5
-
-
0028531612
-
Higher-order moments of the Wigner distribution function in first-order optical systems
-
D. Dragoman, “Higher-order moments of the Wigner distribution function in first-order optical systems,” J. Opt. Soc. Am. A 11, 2643-2646 (1994).
-
(1994)
J. Opt. Soc. Am. A
, vol.11
, pp. 2643-2646
-
-
Dragoman, D.1
-
6
-
-
84975607699
-
Parametric characterization of general partially coherent beams propagating through ABCD optical systems
-
J. Serna, R. Martinez-Herrero, and P. M. Mejias, “Parametric characterization of general partially coherent beams propagating through ABCD optical systems,” J. Opt. Soc. Am. A 8, 1094-1098 (1991).
-
(1991)
J. Opt. Soc. Am. A
, vol.8
, pp. 1094-1098
-
-
Serna, J.1
Martinez-Herrero, R.2
Mejias, P.M.3
-
7
-
-
0029276345
-
On the propagation of the kurtosis parameter of general beams
-
R. Martinez-Herrero, G. Piquero, and P. M. Mejias, “On the propagation of the kurtosis parameter of general beams,” Opt. Commun. 115, 225-232 (1995).
-
(1995)
Opt. Commun.
, vol.115
, pp. 225-232
-
-
Martinez-Herrero, R.1
Piquero, G.2
Mejias, P.M.3
-
8
-
-
0019079188
-
Quasiparticle view of wave propagation
-
N. Marcuvitz, “Quasiparticle view of wave propagation,” Proc. IEEE 68, 1380-1395 (1980).
-
(1980)
Proc. IEEE
, vol.68
, pp. 1380-1395
-
-
Marcuvitz, N.1
-
9
-
-
0027540346
-
ABCD matrix analysis of propagation of Gaussian beams through Kerr media
-
V. Magni, G. Cerullo, and S. De Silvestri, “ABCD matrix analysis of propagation of Gaussian beams through Kerr media,” Opt. Commun. 96, 348-355 (1993).
-
(1993)
Opt. Commun.
, vol.96
, pp. 348-355
-
-
Magni, V.1
Cerullo, G.2
De Silvestri, S.3
-
10
-
-
0026221259
-
Beam characterization through active media
-
R. Martinez-Herrero and P. M. Mejias, “Beam characterization through active media,” Opt. Commun. 85, 162-166 (1991).
-
(1991)
Opt. Commun.
, vol.85
, pp. 162-166
-
-
Martinez-Herrero, R.1
Mejias, P.M.2
-
11
-
-
0027674603
-
Nonlinear propagation and transformation of arbitrary laser beams by means of the generalized ABCD formalism
-
M. A. Porras, J. Alda, and E. Bernabeu, “Nonlinear propagation and transformation of arbitrary laser beams by means of the generalized ABCD formalism,”Appl. Opt. 32, 5885-5892 (1993).
-
(1993)
Appl. Opt
, vol.32
, pp. 5885-5892
-
-
Porras, M.A.1
Alda, J.2
Bernabeu, E.3
-
12
-
-
0009267329
-
Beam propagation in a linear or nonlinear lens-like medium using ABCD ray matrices: The method of moments
-
C. Pare and P. A. Belanger, “Beam propagation in a linear or nonlinear lens-like medium using ABCD ray matrices: the method of moments,” Opt. Quantum Electron. 24, 1051-1070 (1992).
-
(1992)
Opt. Quantum Electron.
, vol.24
, pp. 1051-1070
-
-
Pare, C.1
Belanger, P.A.2
-
14
-
-
84950608626
-
Transport equation for the Wigner distribution function
-
M. J. Bastiaans, “Transport equation for the Wigner distribution function,” Opt. Acta 26, 1265-1272 (1979).
-
(1979)
Opt. Acta
, vol.26
, pp. 1265-1272
-
-
Bastiaans, M.J.1
-
15
-
-
0017465834
-
Geometric optics approach to light acceptance and propagation in graded index fibers
-
A. Ankiewicz and C. Pask, “Geometric optics approach to light acceptance and propagation in graded index fibers,” Opt. Quantum Electron. 9, 87-109 (1977).
-
(1977)
Opt. Quantum Electron.
, vol.9
, pp. 87-109
-
-
Ankiewicz, A.1
Pask, C.2
-
18
-
-
84975625688
-
Wigner distribution function for Gaussian-Schell beams in complex matrix optical systems
-
D. Dragoman, “Wigner distribution function for Gaussian-Schell beams in complex matrix optical systems,” Appl. Opt. 34, 3352-3357 (1995).
-
(1995)
Appl. Opt.
, vol.34
, pp. 3352-3357
-
-
Dragoman, D.1
-
19
-
-
0004055235
-
-
(CBS College Publications, New York, 1985), Chap. 2
-
A. Yariv, Optical Electronics (CBS College Publications, New York, 1985), Chap. 2.
-
Optical Electronics
-
-
Yariv, A.1
-
20
-
-
0020169626
-
Wigner distribution function display of complex 1 D signals
-
K. H. Brenner and A. W. Lohmann, “Wigner distribution function display of complex 1 D signals,” Opt. Commun. 42, 310-314 (1982).
-
(1982)
Opt. Commun.
, vol.42
, pp. 310-314
-
-
Brenner, K.H.1
Lohmann, A.W.2
-
21
-
-
49149141092
-
The Wigner distribution function and its optical production
-
H. O. Bartelt, K. H. Brenner, and A. W. Lohmann, “The Wigner distribution function and its optical production,” Opt. Commun. 32, 32-38 (1980).
-
(1980)
Opt. Commun.
, vol.32
, pp. 32-38
-
-
Bartelt, H.O.1
Brenner, K.H.2
Lohmann, A.W.3
-
22
-
-
0001135437
-
Wave optical analysis of the phase space analyzer
-
H. Weber, “Wave optical analysis of the phase space analyzer,” J. Mod. Opt. 39, 543-559 (1992).
-
(1992)
J. Mod. Opt.
, vol.39
, pp. 543-559
-
-
Weber, H.1
-
23
-
-
0041979225
-
Determination of laser beam parameters with the phase space analyzer
-
N. Hodgson, T. Haase, R. Kostka, and H. Weber, “Determination of laser beam parameters with the phase space analyzer,” Opt. Commun. 24, 927-949 (1992).
-
(1992)
Opt. Commun.
, vol.24
, pp. 927-949
-
-
Hodgson, N.1
Haase, T.2
Kostka, R.3
Weber, H.4
|