메뉴 건너뛰기




Volumn 65, Issue 8, 1997, Pages 739-743

Can an ideal gas feel the shape of its container?

Author keywords

[No Author keywords available]

Indexed keywords


EID: 0039268975     PISSN: 00029505     EISSN: None     Source Type: Journal    
DOI: 10.1119/1.18644     Document Type: Article
Times cited : (43)

References (32)
  • 1
    • 0002697827 scopus 로고
    • Can one hear the shape of a drum?
    • M. Kac, "Can one hear the shape of a drum?," Am. Math. Mon. 73, 1-23 (1966); see also M. Kac, Enigmas of Chance. An Autobiography (Harper and Row, New York, 1985).
    • (1966) Am. Math. Mon. , vol.73 , pp. 1-23
    • Kac, M.1
  • 2
    • 0005602170 scopus 로고
    • Harper and Row, New York
    • M. Kac, "Can one hear the shape of a drum?," Am. Math. Mon. 73, 1-23 (1966); see also M. Kac, Enigmas of Chance. An Autobiography (Harper and Row, New York, 1985).
    • (1985) Enigmas of Chance. An Autobiography
    • Kac, M.1
  • 3
    • 85033106329 scopus 로고    scopus 로고
    • note
    • In this work only Dirichlet boundary conditions will be used, for example, fixed edges for a membrane or zero electromagnetic field on the walls for a resonant cavity. Also, Neumann boundary conditions may be used. This means zero normal derivative on the boundary, for example, the pressure in the acoustical problem.
  • 5
    • 0030528036 scopus 로고    scopus 로고
    • Ideal gas in a finite container
    • M. I. Molina, "Ideal gas in a finite container," Am. J. Phys. 64, 503-505 (1996).
    • (1996) Am. J. Phys. , vol.64 , pp. 503-505
    • Molina, M.I.1
  • 6
    • 0003276274 scopus 로고
    • Methods of modern mathematical physics
    • Academic, New York
    • M. Reed and B. Simon, Methods of Modern Mathematical Physics, Analysis of Operators (Academic, New York, 1978), Vol. IV, p. 260.
    • (1978) Analysis of Operators , vol.4 , pp. 260
    • Reed, M.1    Simon, B.2
  • 7
    • 0001709606 scopus 로고
    • Göttingen Nachr
    • H. Weyl, "Über die asymptotische Verteilung der Eigenwerte," Göttingen Nachr. 110-117 (1911); H. Weyl, "Das asymptotische Verteilungsgesetz der Eigenwerte linearer partieller Differentialgleichungen (mit einer Anwendung auf die Theorie der Hohlraumstrahlung)," Math. Ann. 71, 441-479 (1912). See also H. Weyl, "Ramifications, old and new, of the eigenvalue problem," Bull. Am. Math. Soc. 58, 115-139 (1950). Today these results are a classic, for example, see Ref. 20, Chap. VI, Sec. 4 for a different approach from the Weyl one, and see Ref. 5, Chap. XIII. 15, for a more modern version. For a more accessible and explicit proof in two particular cases, see R. H. Lambert, "Density of states in a Sphere and Cylinder," Am. J. Phys. 36, 417-420 (1968).
    • (1911) Über die Asymptotische Verteilung der Eigenwerte , pp. 110-117
    • Weyl, H.1
  • 8
    • 0001117305 scopus 로고
    • Das asymptotische verteilungsgesetz der eigenwerte linearer partieller differentialgleichungen (mit einer anwendung auf die theorie der hohlraumstrahlung)
    • H. Weyl, "Über die asymptotische Verteilung der Eigenwerte," Göttingen Nachr. 110-117 (1911); H. Weyl, "Das asymptotische Verteilungsgesetz der Eigenwerte linearer partieller Differentialgleichungen (mit einer Anwendung auf die Theorie der Hohlraumstrahlung)," Math. Ann. 71, 441-479 (1912). See also H. Weyl, "Ramifications, old and new, of the eigenvalue problem," Bull. Am. Math. Soc. 58, 115-139 (1950). Today these results are a classic, for example, see Ref. 20, Chap. VI, Sec. 4 for a different approach from the Weyl one, and see Ref. 5, Chap. XIII. 15, for a more modern version. For a more accessible and explicit proof in two particular cases, see R. H. Lambert, "Density of states in a Sphere and Cylinder," Am. J. Phys. 36, 417-420 (1968).
    • (1912) Math. Ann. , vol.71 , pp. 441-479
    • Weyl, H.1
  • 9
    • 53249149321 scopus 로고
    • Ramifications, old and new, of the eigenvalue problem
    • H. Weyl, "Über die asymptotische Verteilung der Eigenwerte," Göttingen Nachr. 110-117 (1911); H. Weyl, "Das asymptotische Verteilungsgesetz der Eigenwerte linearer partieller Differentialgleichungen (mit einer Anwendung auf die Theorie der Hohlraumstrahlung)," Math. Ann. 71, 441-479 (1912). See also H. Weyl, "Ramifications, old and new, of the eigenvalue problem," Bull. Am. Math. Soc. 58, 115-139 (1950). Today these results are a classic, for example, see Ref. 20, Chap. VI, Sec. 4 for a different approach from the Weyl one, and see Ref. 5, Chap. XIII. 15, for a more modern version. For a more accessible and explicit proof in two particular cases, see R. H. Lambert, "Density of states in a Sphere and Cylinder," Am. J. Phys. 36, 417-420 (1968).
    • (1950) Bull. Am. Math. Soc. , vol.58 , pp. 115-139
    • Weyl, H.1
  • 10
    • 0040136811 scopus 로고
    • Density of states in a sphere and cylinder
    • H. Weyl, "Über die asymptotische Verteilung der Eigenwerte," Göttingen Nachr. 110-117 (1911); H. Weyl, "Das asymptotische Verteilungsgesetz der Eigenwerte linearer partieller Differentialgleichungen (mit einer Anwendung auf die Theorie der Hohlraumstrahlung)," Math. Ann. 71, 441-479 (1912). See also H. Weyl, "Ramifications, old and new, of the eigenvalue problem," Bull. Am. Math. Soc. 58, 115-139 (1950). Today these results are a classic, for example, see Ref. 20, Chap. VI, Sec. 4 for a different approach from the Weyl one, and see Ref. 5, Chap. XIII. 15, for a more modern version. For a more accessible and explicit proof in two particular cases, see R. H. Lambert, "Density of states in a Sphere and Cylinder," Am. J. Phys. 36, 417-420 (1968).
    • (1968) Am. J. Phys. , vol.36 , pp. 417-420
    • Lambert, R.H.1
  • 11
    • 78651339290 scopus 로고
    • A study of certain Green's functions with applications in the theory of vibrating membranes
    • Å. Pleijel, "A study of certain Green's functions with applications in the theory of vibrating membranes," Ark. Mat. 2, 553-569 (1954).
    • (1954) Ark. Mat. , vol.2 , pp. 553-569
    • Pleijel, Å.1
  • 12
    • 84972530647 scopus 로고
    • Curvature and the eigenvalues of the Laplacian
    • H. P. McKean and I. M. Singer, "Curvature and the eigenvalues of the Laplacian," J. Diff. Geom. 1, 43-69 (1967).
    • (1967) J. Diff. Geom. , vol.1 , pp. 43-69
    • McKean, H.P.1    Singer, I.M.2
  • 13
    • 84971722398 scopus 로고
    • On hearing the shape of a drum: An extension to higher dimensions
    • R. T. Waechter, "On hearing the shape of a drum: An extension to higher dimensions," Proc. Cambridge Philos. Soc. 72, 439-447 (1972).
    • (1972) Proc. Cambridge Philos. Soc. , vol.72 , pp. 439-447
    • Waechter, R.T.1
  • 14
    • 84976163854 scopus 로고
    • On hearing the shape of a drum: Further results
    • K. Stewartson and R. T. Waechter, "On hearing the shape of a drum: Further results," Proc. Cambridge Philos. Soc. 69, 353-363 (1971); M. Berger, "Geometry of the spectrum. I," Proc. Symp. Pure Math. 27, 129-152 (1975); M. H. Protter, "Can one hear the shape of a drum? revisited," SIAM Rev. 29, 185-197 (1987).
    • (1971) Proc. Cambridge Philos. Soc. , vol.69 , pp. 353-363
    • Stewartson, K.1    Waechter, R.T.2
  • 15
    • 84976163854 scopus 로고
    • Geometry of the spectrum. I
    • K. Stewartson and R. T. Waechter, "On hearing the shape of a drum: Further results," Proc. Cambridge Philos. Soc. 69, 353-363 (1971); M. Berger, "Geometry of the spectrum. I," Proc. Symp. Pure Math. 27, 129-152 (1975); M. H. Protter, "Can one hear the shape of a drum? revisited," SIAM Rev. 29, 185-197 (1987).
    • (1975) Proc. Symp. Pure Math. , vol.27 , pp. 129-152
    • Berger, M.1
  • 16
    • 0023364305 scopus 로고
    • Can one hear the shape of a drum? Revisited
    • K. Stewartson and R. T. Waechter, "On hearing the shape of a drum: Further results," Proc. Cambridge Philos. Soc. 69, 353-363 (1971); M. Berger, "Geometry of the spectrum. I," Proc. Symp. Pure Math. 27, 129-152 (1975); M. H. Protter, "Can one hear the shape of a drum? revisited," SIAM Rev. 29, 185-197 (1987).
    • (1987) SIAM Rev. , vol.29 , pp. 185-197
    • Protter, M.H.1
  • 17
    • 85033116226 scopus 로고    scopus 로고
    • note
    • In some cases, especially when we have a domain with smooth borders, we can calculate explicitly some of the coefficients of the sum S(t) in Eq. (17). Thus in the two-dimensional case we can easily interpret them as the area, perimeter and curvature. However, when we go to higher dimensions a direct interpretation is a nontrivial task (see Refs. 8, 9, and 10). Note that in two dimensions there are some domains whose eigenvalues are known explicitly, so that it is possible to estimate in a simple manner the sum (9), getting the general result (12) [or (13) when it corresponds]. In particular, Ref. 17 recovers the asymptotic expansion of S(t) in the case of a square, equilateral triangle (see also Ref. 21), 30-60-90 triangle, 45-45-90 triangle (see also Ref. 18) and a narrow annular region [this last result is due to Gottlieb (Ref. 22)]. In the case of a circle, Stewartson and Waechter (Ref. 10), using the associated Green's function, could calculate the first six terms of the asymptotic expansion of S(t), whereas Sleeman and Zayed in Ref. 23 got the first three terms for an annular region. In the three-dimensional case, Waechter (Ref. 9) found the six first terms of (17) for a sphere, a rectangular parallelepiped and a cylinder. Sleeman and Zayed got the first four terms for a cylindrical shell.
  • 18
    • 33744584800 scopus 로고
    • Removal of the log factor in the asymptotic estimates of polygonal membrane eigenvalues
    • See also Refs. 8 and 10
    • Note that the error in Kac's formula (12) when there are domains with polygonal boundary is exponentially small, whereas when the domains have smooth boundary this error is polynomially small. See P. B. Bailey and F. H. Brownell, "Removal of the Log Factor in the Asymptotic Estimates of Polygonal Membrane Eigenvalues," J. Math. Anal. Appl. 4, 212-239 (1962). See also Refs. 8 and 10.
    • (1962) J. Math. Anal. Appl. , vol.4 , pp. 212-239
    • Bailey, P.B.1    Brownell, F.H.2
  • 19
    • 84967791504 scopus 로고
    • One cannot hear the shape of a drum
    • C. Gordon, D. L. Webb, and S. Wolpert, "One cannot hear the shape of a drum," Bull. Am. Math. Soc. 27, 134-138 (1992); J. Milnor had already showed, in 1964, an example of two different domains with the same spectrum, but they were two 16-dimensional tori!
    • (1992) Bull. Am. Math. Soc. , vol.27 , pp. 134-138
    • Gordon, C.1    Webb, D.L.2    Wolpert, S.3
  • 20
    • 0001484257 scopus 로고
    • Experiments on not 'hearing the shape' of drums
    • S. Sridhar and A. Kudrolli, "Experiments on Not 'Hearing the Shape' of Drums," Phys. Rev. Lett. 72, 2175-2178 (1994).
    • (1994) Phys. Rev. Lett. , vol.72 , pp. 2175-2178
    • Sridhar, S.1    Kudrolli, A.2
  • 21
    • 85033124053 scopus 로고    scopus 로고
    • note
    • In fact, the expansion for p(E) for the wave equation is true provided the wavelength is much smaller than the length scale of the container. The equivalent statement in the case of the ideal gas is that the mean free path has to be much smaller than the smallest length scale of the container.
  • 22
    • 85033104335 scopus 로고    scopus 로고
    • note
    • In the case of Ref. 4, the author did not obtain the same coefficient because of the approximation used.
  • 23
    • 33744579221 scopus 로고
    • Master's Project (Mathematics Department), University of Missouri - Columbia, (unpublished). See also Refs. 9 and 23
    • K. P. McHale, "Eigenvalues of the Laplacian, 'Can You Hear the Shape of a Drum?'" Master's Project (Mathematics Department), University of Missouri - Columbia, 1994 (unpublished). See also Refs. 9 and 23.
    • (1994) Eigenvalues of the Laplacian, 'Can You Hear the Shape of a Drum?
    • McHale, K.P.1
  • 24
    • 0002959239 scopus 로고
    • Eigenvalues of the Laplacian for rectilinear regions
    • H. P. W. Gottlieb, "Eigenvalues of the Laplacian for rectilinear regions," J. Aust. Math. Soc., Ser. B 29, 270-281 (1988).
    • (1988) J. Aust. Math. Soc., Ser. B , vol.29 , pp. 270-281
    • Gottlieb, H.P.W.1
  • 25
    • 0001668851 scopus 로고
    • Eigenvalues of the Laplacian with Neumann boundary conditions
    • H. P. W. Gottlieb, "Eigenvalues of the Laplacian with Neumann boundary conditions," J. Aust. Math. Soc., Ser. B 26, 293-309 (1985).
    • (1985) J. Aust. Math. Soc., Ser. B , vol.26 , pp. 293-309
    • Gottlieb, H.P.W.1
  • 27
    • 21344482700 scopus 로고
    • On hearing the shape of rectilinear regions
    • E. M. E. Zayed and A. I. Younis, "On hearing the shape of rectilinear regions," J. Math. Phys. 35, 3490-3496 (1994).
    • (1994) J. Math. Phys. , vol.35 , pp. 3490-3496
    • Zayed, E.M.E.1    Younis, A.I.2
  • 28
    • 0000430012 scopus 로고
    • Hearing the shape of an annular drum
    • H. P. W. Gottlieb, "Hearing the Shape of an Annular Drum," J. Aust. Math. Soc., Ser. B 24, 435-438 (1983).
    • (1983) J. Aust. Math. Soc., Ser. B , vol.24 , pp. 435-438
    • Gottlieb, H.P.W.1
  • 29
    • 0005899112 scopus 로고
    • An inverse eigenvalue problem for the Laplace operator
    • Springer-Verlag, Berlin
    • E. M. E. Zayed, "An inverse eigenvalue problem for the Laplace operator," Lecture Notes in Mathematics 964 (Springer-Verlag, Berlin, 1982), pp. 718-726; B. D. Sleeman and E. M. E. Zayed, "Trace formulae for the eigenvalues of the Laplacian," J. Appl. Math. Phys. 35, 106-115 (1984).
    • (1982) Lecture Notes in Mathematics , vol.964 , pp. 718-726
    • Zayed, E.M.E.1
  • 30
    • 0002639540 scopus 로고
    • Trace formulae for the eigenvalues of the Laplacian
    • E. M. E. Zayed, "An inverse eigenvalue problem for the Laplace operator," Lecture Notes in Mathematics 964 (Springer-Verlag, Berlin, 1982), pp. 718-726; B. D. Sleeman and E. M. E. Zayed, "Trace formulae for the eigenvalues of the Laplacian," J. Appl. Math. Phys. 35, 106-115 (1984).
    • (1984) J. Appl. Math. Phys. , vol.35 , pp. 106-115
    • Sleeman, B.D.1    Zayed, E.M.E.2
  • 32
    • 21844488456 scopus 로고
    • Drums that sound the same
    • P. Bérard, "Domaines Plans Isospectraux à la Gordon-Webb-Wolpert (une preuve terre à terre)," preprint, Universite de Grenoble, 1991. See also S. J. Chapman, "Drums That Sound the Same," Am. Math. Monthly 102, 124-138 (1995).
    • (1995) Am. Math. Monthly , vol.102 , pp. 124-138
    • Chapman, S.J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.