메뉴 건너뛰기




Volumn 26, Issue 2, 1997, Pages 223-235

Inconsistent models of arithmetic part I: Finite models

Author keywords

[No Author keywords available]

Indexed keywords


EID: 0039113394     PISSN: 00223611     EISSN: 15730433     Source Type: Journal    
DOI: 10.1023/A:1004251506208     Document Type: Article
Times cited : (44)

References (11)
  • 1
    • 0040297368 scopus 로고
    • Strict, yet rich finitism
    • of Z. W. Wolkowski (ed.) World Scientific, Singapore
    • van Bendegem, Jean-Paul (1993): Strict, yet rich finitism, pp. 61-79 of Z. W. Wolkowski (ed.) First International Symposium on Gödel's Theorems, World Scientific, Singapore.
    • (1993) First International Symposium on Gödel's Theorems , pp. 61-79
    • Van Bendegem, J.-P.1
  • 3
    • 34250262908 scopus 로고
    • A theorem in 3-valued model theory, with connections to number theory, type theory and relevance logic
    • Dunn, J. M. (1979): A theorem in 3-valued model theory, with connections to number theory, type theory and relevance logic, Studia Logica 38, 149-169.
    • (1979) Studia Logica , vol.38 , pp. 149-169
    • Dunn, J.M.1
  • 6
    • 40749086497 scopus 로고
    • Inconsistent models for relevant arithmetic
    • Meyer, R. K. and Mortensen, C. (1984): Inconsistent models for relevant arithmetic, Journal of Symbolic Logic 49, 917-929.
    • (1984) Journal of Symbolic Logic , vol.49 , pp. 917-929
    • Meyer, R.K.1    Mortensen, C.2
  • 9
    • 0039979569 scopus 로고
    • Minimally inconsistent LP
    • Priest, G. (1991): Minimally inconsistent LP, Studia Logica 50, 321-331.
    • (1991) Studia Logica , vol.50 , pp. 321-331
    • Priest, G.1
  • 10
    • 0039705525 scopus 로고
    • Is arithmetic consistent?
    • Priest, G. (1994): Is arithmetic consistent?, Mind 103, 337-349.
    • (1994) Mind , vol.103 , pp. 337-349
    • Priest, G.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.