메뉴 건너뛰기




Volumn 76, Issue 2, 1999, Pages 183-187

Nonosculating Sets of Positive Reach

Author keywords

Exceptional relative positions; Nonosculating condition; Sets of positive reach

Indexed keywords


EID: 0039014396     PISSN: 00465755     EISSN: None     Source Type: Journal    
DOI: 10.1023/A:1005162207767     Document Type: Article
Times cited : (7)

References (7)
  • 3
    • 0013494338 scopus 로고    scopus 로고
    • A generalization of intersection formulae of integral geometry
    • Glasauer, S.: A generalization of intersection formulae of integral geometry, Geom. Dedicata 68 (1997), 101-121.
    • (1997) Geom. Dedicata , vol.68 , pp. 101-121
    • Glasauer, S.1
  • 4
    • 0039908447 scopus 로고    scopus 로고
    • Remarks on a translative formula for sets of positve reach
    • Rataj, J.: Remarks on a translative formula for sets of positve reach, Geom. Dedicata 65 (1997), 59-62.
    • (1997) Geom. Dedicata , vol.65 , pp. 59-62
    • Rataj, J.1
  • 5
    • 0005703981 scopus 로고
    • Mixed curvature measures for sets of positive reach and a translative integral formula
    • Rataj, J. and Zähle, M.: Mixed curvature measures for sets of positive reach and a translative integral formula, Geom. Dedicata 57 (1995), 259-283.
    • (1995) Geom. Dedicata , vol.57 , pp. 259-283
    • Rataj, J.1    Zähle, M.2
  • 6
    • 84966233901 scopus 로고
    • A short proof of a principal kinematic formula and extensions
    • Rother, W. and Zähle, M.: A short proof of a principal kinematic formula and extensions, Trans. Amer. Math. Soc. 321 (1990), 547-558.
    • (1990) Trans. Amer. Math. Soc. , vol.321 , pp. 547-558
    • Rother, W.1    Zähle, M.2
  • 7
    • 0005515192 scopus 로고    scopus 로고
    • Convex bodies in exceptional relative position
    • to appear
    • Schneider, R.: Convex bodies in exceptional relative position, J. London Math. Soc. (to appear).
    • J. London Math. Soc.
    • Schneider, R.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.