-
1
-
-
51249176660
-
Bi-convexity and bi-martingales
-
R. Aumann and S. Hart. Bi-convexity and bi-martingales. Israel. J. Math., 54(2):159-180, 1986.
-
(1986)
Israel. J. Math.
, vol.54
, Issue.2
, pp. 159-180
-
-
Aumann, R.1
Hart, S.2
-
2
-
-
84971928488
-
Restrictions on microstructure
-
K. Bhattacharya, N. B. Firoozye, R. D. James, and R. V. Kohn. Restrictions on microstructure. Proc. Roy. Soc. Edinburgh Sect. A, 124:843-878, 1994.
-
(1994)
Proc. Roy. Soc. Edinburgh Sect. A
, vol.124
, pp. 843-878
-
-
Bhattacharya, K.1
Firoozye, N.B.2
James, R.D.3
Kohn, R.V.4
-
3
-
-
0038496367
-
An algebraic characterization of quasiconvex functions
-
E. Casadio-Tarabusi. An algebraic characterization of quasiconvex functions. Ricerche Mat., 42:11-24, 1993.
-
(1993)
Ricerche Mat.
, vol.42
, pp. 11-24
-
-
Casadio-Tarabusi, E.1
-
4
-
-
0011213027
-
The two-well problem in three dimensions
-
G. Dolzmann, B. Kirchheim, S. Müller, and V. Šverák. The two-well problem in three dimensions. Calc. Var. Partial Differential Equations, 10(1):21-40, 2000.
-
(2000)
Calc. Var. Partial Differential Equations
, vol.10
, Issue.1
, pp. 21-40
-
-
Dolzmann, G.1
Kirchheim, B.2
Müller, S.3
Šverák, V.4
-
5
-
-
0038971640
-
-
Manuscript, Max Planck Institute for Mathematics in the Sciences, Leipzig
-
B. Kirchheim. On the geometry of rank-one convex hulls. Manuscript, Max Planck Institute for Mathematics in the Sciences, Leipzig, 1999.
-
(1999)
On the Geometry of Rank-one Convex Hulls
-
-
Kirchheim, B.1
-
6
-
-
0011189227
-
-
Preprint 72/1999, Max Planck Institute for Mathematics in the Sciences, Leipzig
-
B. Kirchheim, J. Kristensen, and J. Ball. Regularity of quasiconvex envelopes. Preprint 72/1999, Max Planck Institute for Mathematics in the Sciences, Leipzig, 1999.
-
(1999)
Regularity of Quasiconvex Envelopes
-
-
Kirchheim, B.1
Kristensen, J.2
Ball, J.3
-
7
-
-
85037282040
-
-
M.Sc. Thesis, Department of Applied Mathematics, Charles University, Prague
-
B. Letocha. Directional convexity (in Czech). M.Sc. Thesis, Department of Applied Mathematics, Charles University, Prague, 1999.
-
(1999)
Directional Convexity (in Czech)
-
-
Letocha, B.1
-
8
-
-
84972497511
-
Quasi-convexity and the lower semicontinuity of multiple integrals
-
C. B. Morrey. Quasi-convexity and the lower semicontinuity of multiple integrals. Pacific J. Math., 2:25-53, 1952.
-
(1952)
Pacific J. Math.
, vol.2
, pp. 25-53
-
-
Morrey, C.B.1
-
9
-
-
0039572462
-
On functional separately convex hulls
-
J. Matoušek and P. Plecháč. On functional separately convex hulls. Discrete Comput. Geom., 19:105-130, 1998.
-
(1998)
Discrete Comput. Geom.
, vol.19
, pp. 105-130
-
-
Matoušek, J.1
Plecháč, P.2
-
11
-
-
0000369212
-
Convex integration with constraints and applications to phase transitions and partial differential equations
-
S. Müller and V. Šverák. Convex integration with constraints and applications to phase transitions and partial differential equations. J. European Math. Soc., 1(4):393-422, 1999.
-
(1999)
J. European Math. Soc.
, vol.1
, Issue.4
, pp. 393-422
-
-
Müller, S.1
Šverák, V.2
-
12
-
-
0002142597
-
Variational models for microstructure and phase transitions
-
Calculus of Variations and Geometric Evolution Problems (S. Hildebrandt et al., eds.), Springer-Verlag, Berlin
-
S. Müller. Variational models for microstructure and phase transitions. In Calculus of Variations and Geometric Evolution Problems (S. Hildebrandt et al., eds.), pages 85-210. Lecture Notes in Mathematics, vol. 1713. Springer-Verlag, Berlin, 1999.
-
(1999)
Lecture Notes in Mathematics
, vol.1713
, pp. 85-210
-
-
Müller, S.1
-
13
-
-
0346400959
-
Rank-one convexity implies quasiconvexity on diagonal matrices
-
S. Müller. Rank-one convexity implies quasiconvexity on diagonal matrices. Internat. Math. Res. Not. 1999, 20:1087-1095, 1999.
-
(1999)
Internat. Math. Res. Not. 1999
, vol.20
, pp. 1087-1095
-
-
Müller, S.1
-
15
-
-
84974157879
-
New examples of quasiconvex functions
-
V. Šverák. New examples of quasiconvex functions. Proc. Roy. Soc. Edinburgh Sect. A, 120:185-189, 1992.
-
(1992)
Proc. Roy. Soc. Edinburgh Sect. A
, vol.120
, pp. 185-189
-
-
Šverák, V.1
-
16
-
-
0001530984
-
On separately convex functions
-
D. Kinderlehrer et al., eds., Springer-Verlag, Berlin
-
L. Tartar. On separately convex functions. In Microstructure and Phase Transition, The IMA Volumes in Mathematics and Its Applications, vol. 54 (D. Kinderlehrer et al., eds.), pages 191-204. Springer-Verlag, Berlin, 1993.
-
(1993)
Microstructure and Phase Transition, the IMA Volumes in Mathematics and Its Applications
, vol.54
, pp. 191-204
-
-
Tartar, L.1
|