-
2
-
-
0002155244
-
Random dynamical systems
-
Arnold, L., Crauel, H., and Eckmann, J.-P. (eds.), Lyapunov Exponents, Proceedings, Oberwolfach 1990, Springer, Berlin
-
Arnold, L., and Crauel, H. (1991). Random dynamical systems. In Arnold, L., Crauel, H., and Eckmann, J.-P. (eds.), Lyapunov Exponents, Proceedings, Oberwolfach 1990, Lecture Notes in Mathematics 1486, Springer, Berlin, pp. 1-22.
-
(1991)
Lecture Notes in Mathematics
, vol.1486
, pp. 1-22
-
-
Arnold, L.1
Crauel, H.2
-
3
-
-
0011607426
-
A stochastic version of center manifold theory
-
Boxler, P. (1989). A stochastic version of center manifold theory. Prob. Th. Rel. Fields 83, 505-545.
-
(1989)
Prob. Th. Rel. Fields
, vol.83
, pp. 505-545
-
-
Boxler, P.1
-
4
-
-
84974252599
-
Dynamics of Markov chains and stable manifolds for random diffeomorphisms
-
Brin, M., and Kifer, Y. (1987). Dynamics of Markov chains and stable manifolds for random diffeomorphisms. Ergod. Theory Dynam. Syst. 7, 351-374.
-
(1987)
Ergod. Theory Dynam. Syst.
, vol.7
, pp. 351-374
-
-
Brin, M.1
Kifer, Y.2
-
6
-
-
0007837893
-
Flows of stochastic dynamical systems: Ergodic theory
-
Carverhill, A. (1985). Flows of stochastic dynamical systems: Ergodic theory. Stochastics 14, 273-317.
-
(1985)
Stochastics
, vol.14
, pp. 273-317
-
-
Carverhill, A.1
-
7
-
-
0001516826
-
Extremal exponents of random dynamical systems do not vanish
-
Crauel, H. (1990). Extremal exponents of random dynamical systems do not vanish. J. Dynam. Diff. Eq. 2, 245-291.
-
(1990)
J. Dynam. Diff. Eq.
, vol.2
, pp. 245-291
-
-
Crauel, H.1
-
10
-
-
0000999344
-
Proof of Pesin's stable manifold theorem
-
Palis, J. (ed.), Geometric Dynamics, Springer, Berlin
-
Fathi, A., Herman, M., and Yoccoz, J. C. (1983). Proof of Pesin's stable manifold theorem. In Palis, J. (ed.), Geometric Dynamics, Lecture Notes in Mathematics 1007, Springer, Berlin, pp. 177-215.
-
(1983)
Lecture Notes in Mathematics
, vol.1007
, pp. 177-215
-
-
Fathi, A.1
Herman, M.2
Yoccoz, J.C.3
-
11
-
-
0000044573
-
Stable manifolds and hyperbolic sets
-
Global Analysis, Am. Math. Soc.
-
Hirsch, M., and Pugh, C. (1970). Stable manifolds and hyperbolic sets. In Global Analysis, Proc. Symp. Pure Math. XIV, Am. Math. Soc.
-
(1970)
Proc. Symp. Pure Math.
, vol.14
-
-
Hirsch, M.1
Pugh, C.2
-
12
-
-
0001837697
-
On the smoothness of the composition map
-
Irwin, M. C. (1972). On the smoothness of the composition map. Q. J. Math. 23, 113-133.
-
(1972)
Q. J. Math.
, vol.23
, pp. 113-133
-
-
Irwin, M.C.1
-
13
-
-
0000543733
-
A multiplicative ergodic theorem. Lyapunov characteristic numbers for dynamical systems
-
Oseledec, V. I. (1968). A multiplicative ergodic theorem. Lyapunov characteristic numbers for dynamical systems. Trans. Moscow. Soc. 19, 197-231.
-
(1968)
Trans. Moscow. Soc.
, vol.19
, pp. 197-231
-
-
Oseledec, V.I.1
-
14
-
-
0000322232
-
Families of invariant manifolds corresponding to nonzero characteristic exponents
-
Pesin, J. B. (1976). Families of invariant manifolds corresponding to nonzero characteristic exponents. Izv. Akad Nauk SSSR Ser. Math. 40, 1332-1379.
-
(1976)
Izv. Akad Nauk SSSR Ser. Math.
, vol.40
, pp. 1332-1379
-
-
Pesin, J.B.1
-
15
-
-
33750632353
-
Description of the π-partition of a diffeomorphism with invariant measure
-
Pesin, J. B. (1977a). Description of the π-partition of a diffeomorphism with invariant measure. Math. Zametki 21, 29-44.
-
(1977)
Math. Zametki
, vol.21
, pp. 29-44
-
-
Pesin, J.B.1
-
16
-
-
84961291543
-
Characteristic Lyapunov exponents and smooth ergodic theory
-
Pesin, J. B. (1977b). Characteristic Lyapunov exponents and smooth ergodic theory. Russ. Math. Sun. 32, 55-112.
-
(1977)
Russ. Math. Sun.
, vol.32
, pp. 55-112
-
-
Pesin, J.B.1
-
18
-
-
51649166261
-
Ergodic theory of differentiable dynamical systems
-
Ruelle, D. (1979). Ergodic theory of differentiable dynamical systems. Publ. Math. IHES 50, 27-58.
-
(1979)
Publ. Math. IHES
, vol.50
, pp. 27-58
-
-
Ruelle, D.1
-
19
-
-
49349126301
-
A spectral theory for linear differential systems
-
Sacker, R. J., and Sell, G. R. (1978). A spectral theory for linear differential systems. J. Diff. Eq. 27, 320-358.
-
(1978)
J. Diff. Eq.
, vol.27
, pp. 320-358
-
-
Sacker, R.J.1
Sell, G.R.2
|