-
1
-
-
0040186601
-
Quasi-interpolation in the absence of polynomial reproduction
-
D. Braess, & L.L. Schumaker. Basel: Birkhäuser
-
Beatson R. K., Light W. A. Quasi-interpolation in the absence of polynomial reproduction. Braess D., Schumaker L. L. Numerical Methods of Approximation Theory. 1992;21-39 Birkhäuser, Basel.
-
(1992)
Numerical Methods of Approximation Theory
, pp. 21-39
-
-
Beatson, R.K.1
Light, W.A.2
-
2
-
-
0008060486
-
Univariate multiquadric approximation: quasi interpolation to scattered data
-
NA, University of Cambridge
-
R. K. Beatson, M. J. D. Powell, Univariate multiquadric approximation: quasi interpolation to scattered data, report DAMTP, 1990/NA, University of Cambridge.
-
(1990)
Report DAMTP
-
-
Beatson, R.K.1
Powell, M.J.D.2
-
3
-
-
0000709896
-
The polynomials in the linear space of integer translates of a compactly supported function
-
de Boor C. The polynomials in the linear space of integer translates of a compactly supported function. Constr. Approx. 3:1987;199-208.
-
(1987)
Constr. Approx.
, vol.3
, pp. 199-208
-
-
De Boor, C.1
-
4
-
-
0001833663
-
Quasi-interpolants and approximation power of multivariate splines
-
W. Dahmen, M. Gasca, & C.A. Micchelli. Dordrecht: Kluwer
-
de Boor C. Quasi-interpolants and approximation power of multivariate splines. Dahmen W., Gasca M., Micchelli C. A. Computation of Curves and Surfaces. 1990;313-345 Kluwer, Dordrecht.
-
(1990)
Computation of Curves and Surfaces
, pp. 313-345
-
-
De Boor, C.1
-
6
-
-
0001454271
-
Fourier analysis of approximation orders from principal shift-invariant spaces
-
de Boor C., Ron A. Fourier analysis of approximation orders from principal shift-invariant spaces. Constr. Approx. 8:1992;427-462.
-
(1992)
Constr. Approx.
, vol.8
, pp. 427-462
-
-
De Boor, C.1
Ron, A.2
-
8
-
-
0001044784
-
A natural formulation of quasi-Interpolation by multivariate splines
-
Chui C. K., Diamond H. A natural formulation of quasi-Interpolation by multivariate splines. Proc. Amer. Math. Soc. 99:1987;643-646.
-
(1987)
Proc. Amer. Math. Soc.
, vol.99
, pp. 643-646
-
-
Chui, C.K.1
Diamond, H.2
-
9
-
-
0001467606
-
Local approximation by certain spaces of multivariate exponential polynomials, approximation order of exponential box splines and related interpolation problems
-
Dyn N., Ron A. Local approximation by certain spaces of multivariate exponential polynomials, approximation order of exponential box splines and related interpolation problems. Trans. Amer. Math. Soc. 319:1990;381-404.
-
(1990)
Trans. Amer. Math. Soc.
, vol.319
, pp. 381-404
-
-
Dyn, N.1
Ron, A.2
-
10
-
-
0001991994
-
Some aspects of radial basis function approximation
-
S.P. Singh. Approximation Theory, Spline Functions and Applications
-
Light W. A. Some aspects of radial basis function approximation. Singh S. P. Approximation Theory, Spline Functions and Applications. NATO ASI Series. 356:1992;163-190.
-
(1992)
NATO ASI Series
, vol.356
, pp. 163-190
-
-
Light, W.A.1
-
11
-
-
0008015689
-
Error Bounds for multiquadric Interpolation
-
C.K. Chui, L.L. Schumaker, & J.D. Ward.
-
Madych W. A., Nelson S. A. Error Bounds for multiquadric Interpolation. Chui C. K., Schumaker L. L., Ward J. D. Approximation Theory, VI. 1989;413-416.
-
(1989)
Approximation Theory, VI
, pp. 413-416
-
-
Madych, W.A.1
Nelson, S.A.2
-
12
-
-
34250122797
-
Interpolation of scattered data: Distance matrices and conditionally positive definitive functions
-
Micchelli C. A. Interpolation of scattered data: distance matrices and conditionally positive definitive functions. Constr. Approx. 2:1986;11-22.
-
(1986)
Constr. Approx.
, vol.2
, pp. 11-22
-
-
Micchelli, C.A.1
-
13
-
-
0010004937
-
Radial basis functions for multivariable interpolation: A review
-
D.F. Griffiths, & G.A. Watson. Harlow: Longman Scientific
-
Powell M. J. D. Radial basis functions for multivariable interpolation: A review. Griffiths D. F., Watson G. A. Numerical Analysis. 1987;223-241 Longman Scientific, Harlow.
-
(1987)
Numerical Analysis
, pp. 223-241
-
-
Powell, M.J.D.1
-
14
-
-
0038840923
-
Approximation orders from principal shift-invariant spaces generated by a radial basis function
-
D. Braess, & L.L. Schumaker. Basel: Birkhäuser
-
Ron A. Approximation orders from principal shift-invariant spaces generated by a radial basis function. Braess D., Schumaker L. L. Numerical Methods of Approximation Theory. 1992;245-268 Birkhäuser, Basel.
-
(1992)
Numerical Methods of Approximation Theory
, pp. 245-268
-
-
Ron, A.1
-
15
-
-
51249166702
-
Error estimates and condition numbers for radial basis function interpolation
-
Schaback R. Error estimates and condition numbers for radial basis function interpolation. Adv. Comput. Math. 3:1995;251-264.
-
(1995)
Adv. Comput. Math.
, vol.3
, pp. 251-264
-
-
Schaback, R.1
-
18
-
-
51649133223
-
Hermite-Birkhoff interpolation of scattered data by radial basis function
-
Wu Z. Hermite-Birkhoff interpolation of scattered data by radial basis function. Approx. Theory Appl. 8:1992;1-10.
-
(1992)
Approx. Theory Appl.
, vol.8
, pp. 1-10
-
-
Wu, Z.1
-
19
-
-
0000239840
-
Shape preserving properties and convergence of univariate multiquadric quasi-interpolation
-
Wu Z., Schaback R. Shape preserving properties and convergence of univariate multiquadric quasi-interpolation. Acta Math. Appl. Sinica. 10:1994;441-446.
-
(1994)
Acta Math. Appl. Sinica
, vol.10
, pp. 441-446
-
-
Wu, Z.1
Schaback, R.2
-
20
-
-
14544290310
-
Local error estimates for radial basis function interpolation of scattered data
-
Wu Z., Schaback R. Local error estimates for radial basis function interpolation of scattered data. IMA J. Numer. Anal. 13:1993;13-27.
-
(1993)
IMA J. Numer. Anal.
, vol.13
, pp. 13-27
-
-
Wu, Z.1
Schaback, R.2
|