메뉴 건너뛰기




Volumn 42, Issue 3, 1999, Pages 380-385

Asymptotic behavior of optimal circle packings in a square

Author keywords

Asymptotic bound; Circle packing

Indexed keywords


EID: 0038853615     PISSN: 00084395     EISSN: None     Source Type: Journal    
DOI: 10.4153/CMB-1999-044-4     Document Type: Article
Times cited : (14)

References (8)
  • 2
    • 0040184334 scopus 로고
    • A packing inequality for compact convex subsets of the plane
    • J. H. Folkman and R. L. Graham, A packing inequality for compact convex subsets of the plane. Canad. Math. Bull. 12(1969), 745-752.
    • (1969) Canad. Math. Bull. , vol.12 , pp. 745-752
    • Folkman, J.H.1    Graham, R.L.2
  • 3
    • 0003504161 scopus 로고    scopus 로고
    • Repeated patterns of dense packings of equal disks in a square
    • 17 pp. (electronic)
    • R. L. Graham and B. D. Lubachevsky, Repeated patterns of dense packings of equal disks in a square. Electron. J. Combin. 3(1996), R16, 17 pp. (electronic).
    • (1996) Electron. J. Combin. , vol.3
    • Graham, R.L.1    Lubachevsky, B.D.2
  • 4
    • 0000288208 scopus 로고
    • The number of circles covering a set
    • R. Kershner, The number of circles covering a set. Amer. J. Math. 61(1939), 665-671.
    • (1939) Amer. J. Math. , vol.61 , pp. 665-671
    • Kershner, R.1
  • 7
    • 51249192699 scopus 로고
    • An inequality in the geometry of numbers
    • N. Oler, An inequality in the geometry of numbers. Acta Math. 105(1961), 19-48.
    • (1961) Acta Math. , vol.105 , pp. 19-48
    • Oler, N.1
  • 8
    • 84963002204 scopus 로고
    • On the least number of unit circles which can cover a square
    • S. Verblunsky, On the least number of unit circles which can cover a square. J. London Math. Soc. 24(1949), 164-170.
    • (1949) J. London Math. Soc. , vol.24 , pp. 164-170
    • Verblunsky, S.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.