-
1
-
-
0000761940
-
-
P. M. Dooley, B. R. Lewis, S. T. Gibson, K. G. H. Baldwin, P. C. Cosby, J. L. Price, R. A. Copeland, T. G. Slanger, A. P. Thorne, J. E. Murray, and K. Yoshino, J. Chem. Phys. 109, 3856 (1998).
-
(1998)
J. Chem. Phys.
, vol.109
, pp. 3856
-
-
Dooley, P.M.1
Lewis, B.R.2
Gibson, S.T.3
Baldwin, K.G.H.4
Cosby, P.C.5
Price, J.L.6
Copeland, R.A.7
Slanger, T.G.8
Thorne, A.P.9
Murray, J.E.10
Yoshino, K.11
-
2
-
-
0037627082
-
-
Ph. D. thesis, Australian National University
-
P. M. Dooley, Ph. D. thesis, Australian National University, 1997.
-
(1997)
-
-
Dooley, P.M.1
-
8
-
-
0037627080
-
-
K. Minschwaner, G. P. Anderson, L. A. Hall, and K. Yoshino, J. Geophys. Res. 97, 10103 (1992).
-
(1992)
J. Geophys. Res.
, vol.97
, pp. 10103
-
-
Minschwaner, K.1
Anderson, G.P.2
Hall, L.A.3
Yoshino, K.4
-
9
-
-
0032124724
-
-
B. R. Lewis, S. T. Gibson, L. W. Torop, and D. G. McCoy. Geophys. Res. Lett. 25, 2457 (1998).
-
(1998)
Geophys. Res. Lett.
, vol.25
, pp. 2457
-
-
Lewis, B.R.1
Gibson, S.T.2
Torop, L.W.3
McCoy, D.G.4
-
10
-
-
17744370713
-
-
F. T. Hawes, L. W. Torop, B. R. Lewis, and S. T. Gibson, Phys. Rev. A 63, 012513 (2000).
-
(2000)
Phys. Rev. A
, vol.63
, pp. 012513
-
-
Hawes, F.T.1
Torop, L.W.2
Lewis, B.R.3
Gibson, S.T.4
-
12
-
-
0000879870
-
-
B. R. Lewis, P. M. Dooley, J. P. England, K. Waring, S. T. Gibson, and K. G. H. Baldwin, Phys. Rev. A 54, 3923 (1996).
-
(1996)
Phys. Rev. A
, vol.54
, pp. 3923
-
-
Lewis, B.R.1
Dooley, P.M.2
England, J.P.3
Waring, K.4
Gibson, S.T.5
Baldwin, K.G.H.6
-
14
-
-
0034961545
-
-
B. R. Lewis, S. T. Gibson, F. T. Hawes, and L. W. Torop, Phys. Chem. Earth C26, 519 (2001).
-
(2001)
Phys. Chem. Earth
, vol.C26
, pp. 519
-
-
Lewis, B.R.1
Gibson, S.T.2
Hawes, F.T.3
Torop, L.W.4
-
15
-
-
36549095531
-
-
E. F. van Dishoeck, M. C. van Hemert, A. C. Allison, and A. Dalgarno, J. Chem. Phys. 81, 5709 (1984).
-
(1984)
J. Chem. Phys.
, vol.81
, pp. 5709
-
-
Van Dishoeck, E.F.1
Van Hemert, M.C.2
Allison, A.C.3
Dalgarno, A.4
-
16
-
-
0001855177
-
-
L. Torop, D. G. McCoy, A. J. Blake, J. Wang, and T. Scholz, J. Quant. Spectrosc. Radiat. Transf. 38, 9 (1987).
-
(1987)
J. Quant. Spectrosc. Radiat. Transf.
, vol.38
, pp. 9
-
-
Torop, L.1
McCoy, D.G.2
Blake, A.J.3
Wang, J.4
Scholz, T.5
-
17
-
-
0038302538
-
-
note
-
In contrast to line-by-line SR models, where an additional full set of parameters is required for each isotopomer, no further parameters are required for the CSE model, the isotopic cross section being computed simply by changing the reduced mass in the relevant equations (see Ref. 14).
-
-
-
-
18
-
-
0000734679
-
-
S. T. Gibson, B. R. Lewis, K. G. H. Baldwin, and J. H. Carver, J. Chem. Phys. 94, 1060 (1991).
-
(1991)
J. Chem. Phys.
, vol.94
, pp. 1060
-
-
Gibson, S.T.1
Lewis, B.R.2
Baldwin, K.G.H.3
Carver, J.H.4
-
21
-
-
0000512613
-
-
B. R. Lewis, L. Berzins, J. H. Carver, S. T. Gibson, and D. G. McCoy, J. Quant. Spectrosc. Radiat. Transf. 34, 405 (1985).
-
(1985)
J. Quant. Spectrosc. Radiat. Transf.
, vol.34
, pp. 405
-
-
Lewis, B.R.1
Berzins, L.2
Carver, J.H.3
Gibson, S.T.4
McCoy, D.G.5
-
22
-
-
0037627084
-
-
note
-
g states. In the context of atmospheric applications requiring SR-region modeling, this continuum is usually defined as the difference between the experimental cross section and the SR-band contribution. Since this model-dependent definition is clearly inappropriate for the comparisons examined here, we rely on a computed continuum cross section informed by SR-independent experimental data (see Ref. 19).
-
-
-
-
23
-
-
0037965315
-
-
private communication
-
K. Minschwaner (private communication).
-
-
-
Minschwaner, K.1
-
24
-
-
0037627083
-
-
note
-
2) over the full range of transition energies studied here.
-
-
-
-
25
-
-
0001154075
-
-
K. Yoshino, D. E. Freeman, J. R. Esmond, and W. H. Parkinson, Planet. Space Sci. 35, 1067 (1987).
-
(1987)
Planet. Space Sci.
, vol.35
, pp. 1067
-
-
Yoshino, K.1
Freeman, D.E.2
Esmond, J.R.3
Parkinson, W.H.4
-
26
-
-
0038641470
-
-
note
-
-1 are the most uncertain. The corresponding scanned experimental cross section is significantly lower than the fixed-wavelength measurement of Fig. 2(a), possibly caused by the very narrow minimum in the cross section, together with some wavelength uncertainty. Furthermore, the CSE model suffers from some systematic line position errors in this high-energy, perturbed region of the spectrum, as evident in Fig. 4(e). The plotted points are determined using the minimum experimental and model cross sections in this region, regardless of exact wavelength.
-
-
-
|