메뉴 건너뛰기




Volumn 47, Issue 1, 2003, Pages 173-184

Prediction of surface air temperatures by neural network, example based on three-year temperature monitoring at Spořilov station

Author keywords

[No Author keywords available]

Indexed keywords

AIR TEMPERATURE; ARTIFICIAL NEURAL NETWORK; BOUNDARY LAYER; SURFACE TEMPERATURE;

EID: 0038758815     PISSN: 00393169     EISSN: None     Source Type: Journal    
DOI: 10.1023/A:1022211924646     Document Type: Article
Times cited : (11)

References (10)
  • 1
    • 0034906369 scopus 로고    scopus 로고
    • Precipitation prediction with neural networks
    • Bodri L., 2001. Precipitation prediction with neural networks. Acta Geod. Geoph. Hung., 36, 207-216.
    • (2001) Acta Geod. Geoph. Hung. , vol.36 , pp. 207-216
    • Bodri, L.1
  • 2
    • 0000437839 scopus 로고    scopus 로고
    • Prediction of extreme precipitation using a neural network, application to summer flood occurrence in Moravia
    • Bodri L. and Čermák V., 2000. Prediction of extreme precipitation using a neural network, application to summer flood occurrence in Moravia. Adv. Eng. Soft., 31, 311-321.
    • (2000) Adv. Eng. Soft. , vol.31 , pp. 311-321
    • Bodri, L.1    Čermák, V.2
  • 3
    • 0038451894 scopus 로고    scopus 로고
    • Trends in high frequency recent climate variability
    • submitted
    • Bodri L. and Čermák V., 2002. Trends in high frequency recent climate variability. J. Geophys. Res. (submitted).
    • (2002) J. Geophys. Res.
    • Bodri, L.1    Čermák, V.2
  • 4
    • 0033822847 scopus 로고    scopus 로고
    • Recent climate warming, surface air temperature series and geothermal evidence
    • Čermák V., Šafanda J., Krešl M., Dědeçek P. and Bodri L., 2000. Recent climate warming, surface air temperature series and geothermal evidence. Stud. Geophys. Geod., 44, 430-441.
    • (2000) Stud. Geophys. Geod. , vol.44 , pp. 430-441
    • Čermák, V.1    Šafanda, J.2    Krešl, M.3    Dědeçek, P.4    Bodri, L.5
  • 5
    • 0000437940 scopus 로고
    • Predicting time series using a neural network as a method of distinguishing chaos from noise
    • Elsner J.B., 1992. Predicting time series using a neural network as a method of distinguishing chaos from noise. J. Phys., A25, 843-850.
    • (1992) J. Phys. , vol.25 A , pp. 843-850
    • Elsner, J.B.1
  • 6
    • 0028979544 scopus 로고
    • Trends in high-frequency climate variability in the twentieth century
    • Karl T.R., Knight R.W. and Plummer N., 1995. Trends in high-frequency climate variability in the twentieth century. Nature, 377, 217-220.
    • (1995) Nature , vol.377 , pp. 217-220
    • Karl, T.R.1    Knight, R.W.2    Plummer, N.3
  • 7
    • 0034737033 scopus 로고    scopus 로고
    • A study of optimal model lag and spatial inputs to artificial neural network for rainfall forecasting
    • Luk K.C., Ball J.E. and Sharma A., 2000. A study of optimal model lag and spatial inputs to artificial neural network for rainfall forecasting. J. Hydrol., 227, 56-65.
    • (2000) J. Hydrol. , vol.227 , pp. 56-65
    • Luk, K.C.1    Ball, J.E.2    Sharma, A.3
  • 8
    • 84984414494 scopus 로고
    • Prediction of geomagnetic storms from solar wind data with the use of a neural network
    • Lundstedt H. and Wintoft P., 1994. Prediction of geomagnetic storms from solar wind data with the use of a neural network. Ann. Geophysicae, 12, 19-24.
    • (1994) Ann. Geophysicae , vol.12 , pp. 19-24
    • Lundstedt, H.1    Wintoft, P.2
  • 9
    • 0032572943 scopus 로고    scopus 로고
    • Modeling ambient air temperature time series using neural networks
    • Mihalakakou G., Santamouris M. and Asimakopoulos D., 1998. Modeling ambient air temperature time series using neural networks. J. Geophys. Res., 103, 19,509-19,517.
    • (1998) J. Geophys. Res. , vol.103 , pp. 19509-19517
    • Mihalakakou, G.1    Santamouris, M.2    Asimakopoulos, D.3
  • 10
    • 0033083434 scopus 로고    scopus 로고
    • A neural network approach for modeling the heat island phenomenon in urban areas during the summer period
    • Santamouris M., Mihalakakou G., Papanikolaou N. and Asimakopoulos D., 1999. A neural network approach for modeling the heat island phenomenon in urban areas during the summer period. Geophys. Res. Lett., 26, 337-340.
    • (1999) Geophys. Res. Lett. , vol.26 , pp. 337-340
    • Santamouris, M.1    Mihalakakou, G.2    Papanikolaou, N.3    Asimakopoulos, D.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.