-
1
-
-
0034497113
-
Pseudorandom generators in propositional complexity
-
M. Alekhnovich, E. Ben-Sasson, A. Razborov, A. Wigderson, Pseudorandom generators in propositional complexity, in: Proc. 41st IEEE FOCS, 2000, pp. 43-53.
-
(2000)
Proc. 41st IEEE FOCS
, pp. 43-53
-
-
Alekhnovich, M.1
Ben-Sasson, E.2
Razborov, A.3
Wigderson, A.4
-
2
-
-
0030396103
-
Simplified and improved resolution lower bounds
-
P. Beame, T. Pitassi, Simplified and improved resolution lower bounds, in: Proc. 37th IEEE FOCS, 1996, pp. 274-282.
-
(1996)
Proc. 37th IEEE FOCS
, pp. 274-282
-
-
Beame, P.1
Pitassi, T.2
-
3
-
-
0038442771
-
Propositional proof complexity: Past, present and future
-
Electronic Colloquium on Computational Complexity
-
P. Beame, T. Pitassi, Propositional proof complexity: past, present and future, Technical Report TR98-067, Electronic Colloquium on Computational Complexity, 1998.
-
(1998)
Technical Report
, vol.TR98-067
-
-
Beame, P.1
Pitassi, T.2
-
4
-
-
0000802475
-
Short proofs are narrow - Resolution made simple
-
Ben-Sasson E., Wigderson A. Short proofs are narrow - resolution made simple. J. ACM. 48(2):2001;149-169.
-
(2001)
J. ACM
, vol.48
, Issue.2
, pp. 149-169
-
-
Ben-Sasson, E.1
Wigderson, A.2
-
6
-
-
84957616496
-
Resolution and the weak pigeonhole principle
-
Proc. CSL97, New York, Berlin: Springer
-
Buss S., Pitassi T. Resolution and the weak pigeonhole principle. Proc. CSL97. Lecture Notes in Computer Science. Vol. 1414:1997;149-156 Springer, New York, Berlin.
-
(1997)
Lecture Notes in Computer Science
, vol.1414
, pp. 149-156
-
-
Buss, S.1
Pitassi, T.2
-
7
-
-
0024140287
-
Resolution proofs of generalized pigeonhole principle
-
Buss S., Turán G. Resolution proofs of generalized pigeonhole principle. Theoret. Comput. Sci. 62:1988;311-317.
-
(1988)
Theoret. Comput. Sci.
, vol.62
, pp. 311-317
-
-
Buss, S.1
Turán, G.2
-
8
-
-
0024090265
-
Many hard examples for resolution
-
Chvátal V., Szemerédi E. Many hard examples for resolution. J. ACM. 35(4):1998;759-768.
-
(1998)
J. ACM
, vol.35
, Issue.4
, pp. 759-768
-
-
Chvátal, V.1
Szemerédi, E.2
-
9
-
-
0029720065
-
Using the Groebner basis algorithm to find proofs of unsatisfiability
-
M. Clegg, J. Edmonds, R. Impagliazzo, Using the Groebner basis algorithm to find proofs of unsatisfiability, in: Proc. 28th ACM STOC, 1996, pp. 174-183.
-
(1996)
Proc. 28th ACM STOC
, pp. 174-183
-
-
Clegg, M.1
Edmonds, J.2
Impagliazzo, R.3
-
10
-
-
84881072062
-
A computing procedure for quantification theory
-
Davis M., Putnam H. A computing procedure for quantification theory. J. ACM. 7(3):1960;210-215.
-
(1960)
J. ACM
, vol.7
, Issue.3
, pp. 210-215
-
-
Davis, M.1
Putnam, H.2
-
11
-
-
0000076101
-
The intractability or resolution
-
Haken A. The intractability or resolution. Theoret. Comput. Sci. 39:1985;297-308.
-
(1985)
Theoret. Comput. Sci.
, vol.39
, pp. 297-308
-
-
Haken, A.1
-
12
-
-
0002527779
-
Exponential lower bounds for semantic resolution
-
P. Beame, & S. Buss. Proof Complexity and Feasible Arithmetics: DIMACS Workshop, April 21-24, 1996, Providence, RI: American Mathematical Society
-
Jukna S. Exponential lower bounds for semantic resolution. Beame P., Buss S. Proof Complexity and Feasible Arithmetics: DIMACS Workshop, April 21-24, 1996. DIMACS Series in Discrete Mathematics and Theoretical Computer Science. Vol. 39:1997;163-172 American Mathematical Society, Providence, RI.
-
(1997)
DIMACS Series in Discrete Mathematics and Theoretical Computer Science
, vol.39
, pp. 163-172
-
-
Jukna, S.1
-
14
-
-
0004024270
-
Resolution lower bounds for the weak pigeonhole principle
-
Electronic Colloquium on Computational Complexity
-
R. Raz, Resolution lower bounds for the weak pigeonhole principle, Technical Report TR01-021, Electronic Colloquium on Computational Complexity, 2001.
-
(2001)
Technical Report
, vol.TR01-021
-
-
Raz, R.1
-
15
-
-
84947723577
-
Lower bounds for propositional proofs and independence results in bounded arithmetic
-
F. Meyer auf der Heide, & B. Monien. Proc. 23rd ICALP, New York, Berlin: Springer
-
Razborov A. Lower bounds for propositional proofs and independence results in bounded arithmetic. Meyer auf der Heide F., Monien B. Proc. 23rd ICALP. Lecture Notes in Computer Science. Vol. 1099:1996;48-62 Springer, New York, Berlin.
-
(1996)
Lecture Notes in Computer Science
, vol.1099
, pp. 48-62
-
-
Razborov, A.1
-
16
-
-
0003201006
-
Improved resolution lower bounds for the weak pigeonhole principle
-
Electronic Colloquium on Computational Complexity
-
A. Razborov, Improved resolution lower bounds for the weak pigeonhole principle, Technical Report TR01-055, Electronic Colloquium on Computational Complexity, 2001, Available at ftp://ftp.eccc.uni-trier.de/pub/eccc/reports/2001/TR01-055/index.html.
-
(2001)
Technical Report
, vol.TR01-055
-
-
Razborov, A.1
-
18
-
-
0030642913
-
Read-once branching programs, rectangular proofs of the pigeonhole principle and the transversal calculus
-
A. Razborov, A. Wigderson, A. Yao, Read-once branching programs, rectangular proofs of the pigeonhole principle and the transversal calculus, in: Proc. 29th ACM Symp. on Theory of Computing, 1997, pp. 739-748.
-
(1997)
Proc. 29th ACM Symp. on Theory of Computing
, pp. 739-748
-
-
Razborov, A.1
Wigderson, A.2
Yao, A.3
-
19
-
-
84918983692
-
A machine-oriented logic based on the resolution principle
-
Robinson J.A. A machine-oriented logic based on the resolution principle. J. ACM. 12(1):1965;23-41.
-
(1965)
J. ACM
, vol.12
, Issue.1
, pp. 23-41
-
-
Robinson, J.A.1
-
20
-
-
0001340960
-
On the complexity of derivations in propositional calculus
-
Consultants Bureau, New York, London
-
G.C. Tseitin, On the complexity of derivations in propositional calculus, in: Studies in Constructive Mathematics and Mathematical Logic, Part II, Consultants Bureau, New York, London, 1968.
-
(1968)
Studies in Constructive Mathematics and Mathematical Logic, Part II
-
-
Tseitin, G.C.1
-
21
-
-
0023250297
-
Hard examples for resolution
-
Urquhart A. Hard examples for resolution. J. ACM. 34(1):1987;209-219.
-
(1987)
J. ACM
, vol.34
, Issue.1
, pp. 209-219
-
-
Urquhart, A.1
|