메뉴 건너뛰기




Volumn 6, Issue 1, 2002, Pages 107-139

Classification of asymptotic profiles for nonlinear Schrödinger equations with small initial data

Author keywords

[No Author keywords available]

Indexed keywords


EID: 0038707659     PISSN: 10950761     EISSN: 10950753     Source Type: Journal    
DOI: 10.4310/ATMP.2002.v6.n1.a2     Document Type: Article
Times cited : (56)

References (19)
  • 1
    • 0000073733 scopus 로고
    • Scattering for the nonlinear Schrödinger equations: states close to a soliton
    • V.S. Buslaev and G.S. Perel'man, Scattering for the nonlinear Schrödinger equations: states close to a soliton, St. Petersburg Math J. 4 (1993) 1111-1142.
    • (1993) St. Petersburg Math J. , vol.4 , pp. 1111-1142
    • Buslaev, V.S.1    Perel'man, G.S.2
  • 2
    • 0002779183 scopus 로고
    • On the stability of solitary waves for nonlinear Schrödinger equations. Nonlinear evolution equations
    • 164 Amer. Math. Soc., Providence, RI
    • V.S. Buslaev and G.S. Perel'man, On the stability of solitary waves for nonlinear Schrödinger equations. Nonlinear evolution equations, 75-98, Amer. Math. Soc. Transl. Ser. 2, 164, Amer. Math. Soc., Providence, RI, 1995.
    • (1995) Amer. Math. Soc. Transl. Ser. , vol.2 , pp. 75-98
    • Buslaev, V.S.1    Perel'man, G.S.2
  • 4
    • 0035595894 scopus 로고    scopus 로고
    • Stabilization of solutions to nonlinear Schrödinger equations
    • S. Cuccagna, Stabilization of solutions to nonlinear Schrödinger equations. Comm. Pure Appl. Math. 54 (2001), no. 9, 1110-1145.
    • (2001) Comm. Pure Appl. Math. , vol.54 , Issue.9 , pp. 1110-1145
    • Cuccagna, S.1
  • 6
    • 84990623184 scopus 로고
    • Linearized instability for nonlinear Schrödinger and Klein-Gordon equations
    • M. Grillakis: Linearized instability for nonlinear Schrödinger and Klein-Gordon equations. Comm. Pure Appl. Math. 41 (1988), no. 6, 747-774.
    • (1988) Comm. Pure Appl. Math. , vol.41 , Issue.6 , pp. 747-774
    • Grillakis, M.1
  • 7
    • 84990563336 scopus 로고
    • Analysis of the linearization around a critical point of an infinite dimensional Hamiltonian system
    • M. Grillakis: Analysis of the linearization around a critical point of an infinite dimensional Hamiltonian system, Comm. Pure Appl. Math. 43 (1990), 299-333.
    • (1990) Comm. Pure Appl. Math. , vol.43 , pp. 299-333
    • Grillakis, M.1
  • 8
    • 84990619685 scopus 로고
    • Decay estimates for Schrödinger operators
    • J.-L. Journe, A. Soffer and C.D. Sogge, Decay estimates for Schrödinger operators. Comm. Pure Appl. Math. 44 (1991), no. 5, 573-604.
    • (1991) Comm. Pure Appl. Math. , vol.44 , Issue.5 , pp. 573-604
    • Journe, J.-L.1    Soffer, A.2    Sogge, C.D.3
  • 9
    • 0001322178 scopus 로고    scopus 로고
    • Invariant manifolds for a class of dispersive, Hamiltonian, partial differential equations
    • C. A. Pillet and C. E. Wayne: Invariant manifolds for a class of dispersive, Hamiltonian, partial differential equations. J. Differential Equations 141, no. 2, (1997), 310-326.
    • (1997) J. Differential Equations , vol.141 , Issue.2 , pp. 310-326
    • Pillet, C.A.1    Wayne, C.E.2
  • 10
    • 0001420204 scopus 로고
    • Instability of nonlinear bound states
    • J. Shatah and W. Strauss: Instability of nonlinear bound states. Comm. Math. Phys. 100 (1985), no. 2, 173-190.
    • (1985) Comm. Math. Phys. , vol.100 , Issue.2 , pp. 173-190
    • Shatah, J.1    Strauss, W.2
  • 11
    • 0000978674 scopus 로고    scopus 로고
    • Spectral condition for instability
    • (South Hadley, MA, 1998), Contemp. Math. 255 Amer. Math. Soc., Providence, RI
    • J. Shatah and W. Strauss: Spectral condition for instability. Nonlinear PDE's, dynamics and continuum physics (South Hadley, MA, 1998), 189-198, Contemp. Math., 255, Amer. Math. Soc., Providence, RI, 2000.
    • (2000) Nonlinear PDE's, dynamics and continuum physics , pp. 189-198
    • Shatah, J.1    Strauss, W.2
  • 12
    • 0000301325 scopus 로고
    • Multichannel nonlinear scattering theory for nonintegrable equations I, II
    • A. Soffer and M.I. Weinstein, Multichannel nonlinear scattering theory for nonintegrable equations I, II, Comm. Math. Phys. 133 (1990), 119-146
    • (1990) Comm. Math. Phys. , vol.133 , pp. 119-146
    • Soffer, A.1    Weinstein, M.I.2
  • 14
    • 0033460613 scopus 로고    scopus 로고
    • Resonances, radiation damping and instability in Hamiltonian nonlinear wave equations
    • A. Soffer and M.I. Weinstein, Resonances, radiation damping and instability in Hamiltonian nonlinear wave equations, Invent. math. 136, (1999), 9-74.
    • (1999) Invent. math. , vol.136 , pp. 9-74
    • Soffer, A.1    Weinstein, M.I.2
  • 16
    • 0036221809 scopus 로고    scopus 로고
    • Asymptotic dynamics of nonlinear Schrödinger equations: resonance dominated and dispersion dominated solutions
    • T.-P. Tsai and H.-T. Yau: Asymptotic dynamics of nonlinear Schrödinger equations: resonance dominated and dispersion dominated solutions, Comm. Pure Appl. Math. 55 (2002) 153-216.
    • (2002) Comm. Pure Appl. Math. , vol.55 , pp. 153-216
    • Tsai, T.-P.1    Yau, H.-T.2
  • 17
    • 85036700736 scopus 로고    scopus 로고
    • Relaxation of excited states in nonlinear Schrödinger equations
    • to appear
    • T.-P. Tsai and H.-T. Yau: Relaxation of excited states in nonlinear Schrödinger equations, IMRN, to appear.
    • IMRN
    • Tsai, T.-P.1    Yau, H.-T.2
  • 18
    • 85036695052 scopus 로고    scopus 로고
    • Stable directions for excited states of nonlinear Schrödinger equations
    • to appear
    • T.-P. Tsai and H.-T. Yau: Stable directions for excited states of nonlinear Schrödinger equations, Comm. P.D.E., to appear.
    • (2000) Comm. P.D.E.
    • Tsai, T.-P.1    Yau, H.-T.2
  • 19
    • 84972559697 scopus 로고
    • k,p continuity of wave operators for Schrödinger operators
    • k,p continuity of wave operators for Schrödinger operators, J. Math. Soc. Japan 47, no. 3, (1995), 551-581.
    • (1995) J. Math. Soc. Japan , vol.47 , Issue.3 , pp. 551-581
    • Yajima, K.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.