메뉴 건너뛰기




Volumn 281, Issue 2, 2003, Pages 477-484

Positive solutions of fourth-order boundary value problems with two parameters

Author keywords

Cone; Fixed point index; Positive solution

Indexed keywords


EID: 0038687780     PISSN: 0022247X     EISSN: None     Source Type: Journal    
DOI: 10.1016/S0022-247X(03)00131-8     Document Type: Article
Times cited : (136)

References (11)
  • 1
    • 0001414103 scopus 로고
    • Existence and uniqueness theorems for fourth-order boundary value problems
    • A.R. Aftabizadeh, Existence and uniqueness theorems for fourth-order boundary value problems, J. Math. Anal. Appl. 116 (1986) 415-426.
    • (1986) J. Math. Anal. Appl. , vol.116 , pp. 415-426
    • Aftabizadeh, A.R.1
  • 2
    • 33947175349 scopus 로고
    • On fourth-order boundary value problems arising in beam analysis
    • R. Agarwal, On fourth-order boundary value problems arising in beam analysis, Differential Integral Equations 2 (1989) 91-110.
    • (1989) Differential Integral Equations , vol.2 , pp. 91-110
    • Agarwal, R.1
  • 3
    • 84950192244 scopus 로고
    • Existence and uniqueness theorems for a bending of an elastic beam equation
    • C.P. Gupta, Existence and uniqueness theorems for a bending of an elastic beam equation, Appl. Anal. 26 (1988) 289-304.
    • (1988) Appl. Anal. , vol.26 , pp. 289-304
    • Gupta, C.P.1
  • 4
    • 38249027575 scopus 로고
    • Existence and uniqueness results for the bending of an elastic beam equation at resonance
    • C.P. Gupta, Existence and uniqueness results for the bending of an elastic beam equation at resonance, J. Math. Anal. Appl. 135 (1988) 208-225.
    • (1988) J. Math. Anal. Appl. , vol.135 , pp. 208-225
    • Gupta, C.P.1
  • 5
    • 84968518888 scopus 로고
    • Fourth-order two-point boundary value problems
    • Y. Yang, Fourth-order two-point boundary value problems, Proc. Amer. Math. Soc. 104 (1988) 175-180.
    • (1988) Proc. Amer. Math. Soc. , vol.104 , pp. 175-180
    • Yang, Y.1
  • 6
    • 84968491364 scopus 로고
    • Existence for a fourth-order boundary value problem under a two-parameter nonresonance condition
    • M.A. Del Pino, R.F. Manasevich, Existence for a fourth-order boundary value problem under a two-parameter nonresonance condition, Proc. Amer. Math. Soc. 112 (1991) 81-86.
    • (1991) Proc. Amer. Math. Soc. , vol.112 , pp. 81-86
    • Del Pino, M.A.1    Manasevich, R.F.2
  • 7
    • 85016423744 scopus 로고
    • Nonresonance conditions for fourth-order nonlinear boundary value problems
    • C. De Coster, C. Fabry, F. Munyamarere, Nonresonance conditions for fourth-order nonlinear boundary value problems, Internat. J. Math. Math. Sci. 17 (1994) 725-740.
    • (1994) Internat. J. Math. Math. Sci. , vol.17 , pp. 725-740
    • De Coster, C.1    Fabry, C.2    Munyamarere, F.3
  • 8
    • 84952401788 scopus 로고
    • On the existence of positive solutions of fourth-order ordinary differential equations
    • R. Ma, H. Wang, On the existence of positive solutions of fourth-order ordinary differential equations, Appl. Anal. 59 (1995) 225-231.
    • (1995) Appl. Anal. , vol.59 , pp. 225-231
    • Ma, R.1    Wang, H.2
  • 9
    • 0031276985 scopus 로고    scopus 로고
    • The method of lower and upper solutions for fourth-order two-point boundary value problems
    • R. Ma, J. Zhang, S. Fu, The method of lower and upper solutions for fourth-order two-point boundary value problems, J. Math. Anal. Appl. 215 (1997) 415-422.
    • (1997) J. Math. Anal. Appl. , vol.215 , pp. 415-422
    • Ma, R.1    Zhang, J.2    Fu, S.3
  • 10
    • 0034238776 scopus 로고    scopus 로고
    • The method of lower and upper solutions for a bending of an elastic beam equation
    • Z. Bai, The method of lower and upper solutions for a bending of an elastic beam equation, J. Math. Anal. Appl. 248 (2000) 195-202.
    • (2000) J. Math. Anal. Appl. , vol.248 , pp. 195-202
    • Bai, Z.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.