메뉴 건너뛰기




Volumn 17, Issue 2, 2003, Pages 179-194

Bounds on the complexity of neural-network models and comparison with linear methods

Author keywords

Curse of dimensionality; Neural networks; Non linear models; Polynomially bounded complexity

Indexed keywords

ADAPTIVE CONTROL SYSTEMS; COMPUTATIONAL COMPLEXITY; CONTROL SYSTEM ANALYSIS; MATHEMATICAL MODELS; NEURAL NETWORKS; POLYNOMIALS;

EID: 0038681934     PISSN: 08906327     EISSN: None     Source Type: Journal    
DOI: 10.1002/acs.746     Document Type: Article
Times cited : (2)

References (35)
  • 3
    • 0028446338 scopus 로고
    • Adaptively controlling non-linear continuous-time systems using multilayer neural networks
    • Chen FC, Liu CC. Adaptively controlling non-linear continuous-time systems using multilayer neural networks. IEEE Transactions on Automatic Control 1994; 39:1306-1310.
    • (1994) IEEE Transactions on Automatic Control , vol.39 , pp. 1306-1310
    • Chen, F.C.1    Liu, C.C.2
  • 4
    • 0029308580 scopus 로고
    • Adaptive control of a class of non-linear discrete-time systems using multilayer neural networks
    • Chen FC, Khalil H. Adaptive control of a class of non-linear discrete-time systems using multilayer neural networks. IEEE Transactions on Automatic Control 1995; 40:791-801.
    • (1995) IEEE Transactions on Automatic Control , vol.40 , pp. 791-801
    • Chen, F.C.1    Khalil, H.2
  • 8
    • 85011438572 scopus 로고    scopus 로고
    • Approximation theory of the MLP model in neural networks
    • Pinkus A. Approximation theory of the MLP model in neural networks. Acta Numerica 1999; 8:143-196.
    • (1999) Acta Numerica , vol.8 , pp. 143-196
    • Pinkus, A.1
  • 9
    • 0037849034 scopus 로고    scopus 로고
    • Universality and complexity of approximation of multivariable functions by feedforward networks
    • Roy R, Koeppen M, Ovaska S, Furuhashi T, Hoffmann F (eds). Springer-Verlag: London
    • Kurková V. Universality and complexity of approximation of multivariable functions by feedforward networks. In Softcomputing and Industry: Recent Applications, Roy R, Koeppen M, Ovaska S, Furuhashi T, Hoffmann F (eds). Springer-Verlag: London, 2002; 13-24.
    • (2002) Softcomputing and Industry: Recent Applications , pp. 13-24
    • Kurková, V.1
  • 10
    • 85012688561 scopus 로고
    • Princeton University Press: Princeton, NJ
    • Bellman R. Dynamic Programming. Princeton University Press: Princeton, NJ, 1957.
    • (1957) Dynamic Programming
    • Bellman, R.1
  • 12
    • 0028425062 scopus 로고
    • Neural networks for feedback feedforward non-linear control systems
    • Parisini T, Zoppoli R. Neural networks for feedback feedforward non-linear control systems. IEEE Transactions on Neural Networks 1994; 5:436-449.
    • (1994) IEEE Transactions on Neural Networks , vol.5 , pp. 436-449
    • Parisini, T.1    Zoppoli, R.2
  • 13
    • 0000383868 scopus 로고
    • Parallel networks that learn to pronounce English text
    • Sejnowski TJ, Rosenberg C. Parallel networks that learn to pronounce English text. Complex Systems 1987; 1:145-168.
    • (1987) Complex Systems , vol.1 , pp. 145-168
    • Sejnowski, T.J.1    Rosenberg, C.2
  • 14
    • 0003320059 scopus 로고
    • Learning techniques and neural networks for the solution of N-stage non-linear nonquadratic optimal control problems
    • Isidori A, Tarn TJ (eds). Birkhäuser: Basel
    • Zoppoli R, Parisini T. Learning techniques and neural networks for the solution of N-stage non-linear nonquadratic optimal control problems. In Systems, Models and Feedback: Theory and Applications, Isidori A, Tarn TJ (eds). Birkhäuser: Basel, 1992; 193-210.
    • (1992) Systems, Models and Feedback: Theory and Applications , pp. 193-210
    • Zoppoli, R.1    Parisini, T.2
  • 15
    • 0036115636 scopus 로고    scopus 로고
    • Approximating networks and extended Ritz method for the solution of functional optimization problems
    • Zoppoli R, Sanguineti M, Parisini T. Approximating networks and extended Ritz method for the solution of functional optimization problems. Journal of Optimization Theory and Applications 2002; 112:403-440.
    • (2002) Journal of Optimization Theory and Applications , vol.112 , pp. 403-440
    • Zoppoli, R.1    Sanguineti, M.2    Parisini, T.3
  • 16
    • 0027599793 scopus 로고
    • Universal approximation bounds for superpositions of a sigmoidal function
    • Barron AR. Universal approximation bounds for superpositions of a sigmoidal function. IEEE Transactions on Information Theory 1993; 39:930-945.
    • (1993) IEEE Transactions on Information Theory , vol.39 , pp. 930-945
    • Barron, A.R.1
  • 17
    • 0036165028 scopus 로고    scopus 로고
    • Comparison of worst case errors in linear and neural network approximation
    • Kurková V, Sanguineti M. Comparison of worst case errors in linear and neural network approximation. IEEE Transactions on Information Theory 2002; 48:264-275.
    • (2002) IEEE Transactions on Information Theory , vol.48 , pp. 264-275
    • Kurková, V.1    Sanguineti, M.2
  • 23
    • 0344993943 scopus 로고    scopus 로고
    • Approximation by neural networks is not continuous
    • Kainen PC, Kurková V, Vogt A. Approximation by neural networks is not continuous. Neurocomputing 1999; 29:47-56.
    • (1999) Neurocomputing , vol.29 , pp. 47-56
    • Kainen, P.C.1    Kurková, V.2    Vogt, A.3
  • 24
    • 0008977715 scopus 로고    scopus 로고
    • Remarques sur un resultat non publié de B. Maurey
    • École Polytechnique, Centre de Mathématiques, Palaiseau
    • Pisier G. Remarques sur un resultat non publié de B. Maurey. Seminaire d'Analyse Fonctionelle 1980-81; 1(12) École Polytechnique, Centre de Mathématiques, Palaiseau.
    • Seminaire d'Analyse Fonctionelle 1980-81 , vol.1 , Issue.12
    • Pisier, G.1
  • 25
    • 0000796112 scopus 로고
    • A simple lemma on greedy approximation in Hilbert space and convergence rates for projection pursuit regression and neural network training
    • Jones LK. A simple lemma on greedy approximation in Hilbert space and convergence rates for projection pursuit regression and neural network training. Annals of Statistics 1992; 20:608-613.
    • (1992) Annals of Statistics , vol.20 , pp. 608-613
    • Jones, L.K.1
  • 27
    • 0032096332 scopus 로고    scopus 로고
    • Representations and rates of approximation of real-valued Boolean functions by neural networks
    • Kurková V, Savický P, Hlaváčková K. Representations and rates of approximation of real-valued Boolean functions by neural networks. Neural Networks 1998; 11:651-659.
    • (1998) Neural Networks , vol.11 , pp. 651-659
    • Kurková, V.1    Savický, P.2    Hlaváčková, K.3
  • 28
    • 0027602489 scopus 로고
    • Hinging hyperplanes for regression, classification, and function approximation
    • Breiman L. Hinging hyperplanes for regression, classification, and function approximation. IEEE Transactions on Information Theory 1993; 39:993-1013.
    • (1993) IEEE Transactions on Information Theory , vol.39 , pp. 993-1013
    • Breiman, L.1
  • 33
    • 0002651892 scopus 로고
    • The approximate dimension and bases in nuclear spaces
    • (Original Russian in Uspekhi Matematicheskikh Nauk. 1961, Tom XVI, 4:63-132)
    • Mityagin BS. The approximate dimension and bases in nuclear spaces. Russian Mathematical Surveys 1961; 16:59-127 (Original Russian in Uspekhi Matematicheskikh Nauk. 1961, Tom XVI, 4:63-132).
    • (1961) Russian Mathematical Surveys , vol.16 , pp. 59-127
    • Mityagin, B.S.1
  • 34
    • 4243801801 scopus 로고    scopus 로고
    • Tight bounds on rates of variable-basis approximation via estimates of covering numbers
    • Research Report ICS-02-865 - Institute of Computer Science - Academy of Sciences of the Czech Republic
    • Kurková V, Sanguineti M. Tight bounds on rates of variable-basis approximation via estimates of covering numbers. Research Report ICS-02-865 - Institute of Computer Science - Academy of Sciences of the Czech Republic, 2002.
    • (2002)
    • Kurková, V.1    Sanguineti, M.2
  • 35
    • 0035443484 scopus 로고    scopus 로고
    • Bounds on rates of variable-basis and neural-network approximation
    • Kurková V, Sanguineti M. Bounds on rates of variable-basis and neural-network approximation. IEEE Transactions on Information Theory 2001; 47:2659-2665.
    • (2001) IEEE Transactions on Information Theory , vol.47 , pp. 2659-2665
    • Kurková, V.1    Sanguineti, M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.