메뉴 건너뛰기




Volumn 19, Issue 3, 2003, Pages 611-626

Learning regularization functionals - A supervised training approach

Author keywords

[No Author keywords available]

Indexed keywords

APPROXIMATION THEORY; MATHEMATICAL OPERATORS; OPTIMIZATION; PARAMETER ESTIMATION; QUADRATIC PROGRAMMING;

EID: 0038677996     PISSN: 02665611     EISSN: None     Source Type: Journal    
DOI: 10.1088/0266-5611/19/3/309     Document Type: Article
Times cited : (62)

References (28)
  • 2
    • 0036301838 scopus 로고    scopus 로고
    • Mathematical models for image inpainting
    • Chan T and Shen J 2001 Mathematical models for image inpainting SIAM J. Appl. Math. 62 1019-43
    • (2001) SIAM J. Appl. Math. , vol.62 , pp. 1019-1043
    • Chan, T.1    Shen, J.2
  • 3
    • 0000364765 scopus 로고
    • Robust modeling with erratic data
    • Claerbout J and Muir F 1973 Robust modeling with erratic data Geophysics 38 826-44
    • (1973) Geophysics , vol.38 , pp. 826-844
    • Claerbout, J.1    Muir, F.2
  • 5
    • 84968475581 scopus 로고
    • The effective choice of the smoothing norm in regularization
    • Cullum J 1979 The effective choice of the smoothing norm in regularization Math. Comput. 33 149-70
    • (1979) Math. Comput. , vol.33 , pp. 149-170
    • Cullum, J.1
  • 6
    • 0000183429 scopus 로고    scopus 로고
    • On optimization techniques for solving nonlinear inverse problems
    • Haber E, Ascher U and Oldenburg D 2000 On optimization techniques for solving nonlinear inverse problems Inverse Problems 16 1263-80
    • (2000) Inverse Problems , vol.16 , pp. 1263-1280
    • Haber, E.1    Ascher, U.2    Oldenburg, D.3
  • 7
    • 0035665003 scopus 로고    scopus 로고
    • Preconditioned all-at-one methods for large, sparse parameter estimation problems
    • Haber E and Ascher U 2001 Preconditioned all-at-one methods for large, sparse parameter estimation problems Inverse Problems 17 1847-64
    • (2001) Inverse Problems , vol.17 , pp. 1847-1864
    • Haber, E.1    Ascher, U.2
  • 13
    • 0029750160 scopus 로고    scopus 로고
    • 3D inversion of magnetic data
    • Li Y and Oldenburg D W 1996 3D inversion of magnetic data Geophysics 61 394-408
    • (1996) Geophysics , vol.61 , pp. 394-408
    • Li, Y.1    Oldenburg, D.W.2
  • 14
    • 0002704818 scopus 로고
    • A practical Bayesian framework for backpropagation networks
    • Mackay D 1992 A practical Bayesian framework for backpropagation networks Neural Comput. 4 448-72
    • (1992) Neural Comput. , vol.4 , pp. 448-472
    • Mackay, D.1
  • 18
    • 0025465145 scopus 로고
    • Scale space and edge detection using anisotropic diffusion
    • Perona P and Malik J 1990 Scale space and edge detection using anisotropic diffusion IEEE Trans. Pattern Anal. 12 629-39
    • (1990) IEEE Trans. Pattern Anal. , vol.12 , pp. 629-639
    • Perona, P.1    Malik, J.2
  • 26
    • 0032025550 scopus 로고    scopus 로고
    • FRAME: Filters, random fields, and maximum entropy - Towards a unified theory for texture modeling
    • Zhu S C, Wu Y N and Mumford D 1998 FRAME: filters, random fields, and maximum entropy - towards a unified theory for texture modeling Int. J. Comput. Vis. 27 1-20
    • (1998) Int. J. Comput. Vis. , vol.27 , pp. 1-20
    • Zhu, S.C.1    Wu, Y.N.2    Mumford, D.3
  • 27
    • 0036647281 scopus 로고    scopus 로고
    • Learning in Gibbsian fields: How accurate and how fast can it be?
    • Zhu S C and Liu X W 2002 Learning in Gibbsian fields: how accurate and how fast can it be? IEEE Trans. Pattern Anal. Mach. Intell. 24 104-9
    • (2002) IEEE Trans. Pattern Anal. Mach. Intell. , vol.24 , pp. 104-109
    • Zhu, S.C.1    Liu, X.W.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.