-
1
-
-
0010678576
-
Numerical approximation of the 1-D nonlinear drift-diffusion model in semiconductors
-
Rapallo. World Sci. Publishing, River Edge, NJ (1992)
-
F. Arimburgo, C. Baiocchi and L.D. Marini, Numerical approximation of the 1-D nonlinear drift-diffusion model in semiconductors, in Nonlinear kinetic theory and mathematical aspects of hyperbolic systems, Rapallo, (1992) 1-10. World Sci. Publishing, River Edge, NJ (1992).
-
(1992)
Nonlinear Kinetic Theory and Mathematical Aspects of Hyperbolic Systems
, pp. 1-10
-
-
Arimburgo, F.1
Baiocchi, C.2
Marini, L.D.3
-
2
-
-
0038523649
-
On the semiconductor drift diffusion equations
-
H. Beirão da Veiga, On the semiconductor drift diffusion equations. Differential Integral Equations 9 (1996) 729-744.
-
(1996)
Differential Integral Equations
, vol.9
, pp. 729-744
-
-
Beirão da Veiga, H.1
-
5
-
-
0000617339
-
Two-dimensional exponential fitting and applications to drift-diffusion models
-
F. Brezzi, L.D. Marini and P. Pietra, Two-dimensional exponential fitting and applications to drift-diffusion models. SIAM J. Numer. Anal. 26 (1989) 1342-1355.
-
(1989)
SIAM J. Numer. Anal.
, vol.26
, pp. 1342-1355
-
-
Brezzi, F.1
Marini, L.D.2
Pietra, P.3
-
6
-
-
0037252791
-
Convergence of a finite volume scheme for the drift-diffusion equations in 1-D
-
C. Chainais-Hillairet and Y.J. Peng, Convergence of a finite volume scheme for the drift-diffusion equations in 1-D. IMA J. Numer. Anal. 23 (2003) 81-108.
-
(2003)
IMA J. Numer. Anal.
, vol.23
, pp. 81-108
-
-
Chainais-Hillairet, C.1
Peng, Y.J.2
-
7
-
-
0037509747
-
A finite volume scheme to the drift-diffusion equations for semiconductors
-
R. Herbin and D. Kröner Eds., Hermes, Porquerolles, France
-
C. Chainais-Hillairet and Y.J. Peng, A finite volume scheme to the drift-diffusion equations for semiconductors, in Proc. of The Third International Symposium on Finite Volumes for Complex Applications, R. Herbin and D. Kröner Eds., Hermes, Porquerolles, France (2002) 163-170.
-
(2002)
Proc. of The Third International Symposium on Finite Volumes for Complex Applications
, pp. 163-170
-
-
Chainais-Hillairet, C.1
Peng, Y.J.2
-
8
-
-
85039658163
-
Finite volume approximation for degenerate drift-diffusion system in several space dimensions
-
submitted
-
C. Chainais-Hillairet and Y.J. Peng, Finite volume approximation for degenerate drift-diffusion system in several space dimensions. Math. Models Methods. Appl. Sci. (submitted).
-
Math. Models Methods. Appl. Sci.
-
-
Chainais-Hillairet, C.1
Peng, Y.J.2
-
10
-
-
70350322945
-
Finite volume methods
-
North-Holland, Amsterdam
-
R. Eymard, T. Gallouët and R. Herbin, Finite Volume Methods. North-Holland, Amsterdam, Handb. Numer. Anal. VII (2000) 713-1020.
-
(2000)
Handb. Numer. Anal.
, vol.7
, pp. 713-1020
-
-
Eymard, R.1
Gallouët, T.2
Herbin, R.3
-
11
-
-
0036022623
-
Convergence of a finite volume scheme for nonlinear degenerate parabolic equations
-
R. Eymard, T. Gallouët, R. Herbin and A. Michel, Convergence of a finite volume scheme for nonlinear degenerate parabolic equations. Numer. Math. 92 (2002) 41-82,
-
(2002)
Numer. Math.
, vol.92
, pp. 41-82
-
-
Eymard, R.1
Gallouët, T.2
Herbin, R.3
Michel, A.4
-
12
-
-
0002854786
-
Global solutions of the time-dependent drift-diffusion semiconductor equations
-
W. Fang and K. Ito, Global solutions of the time-dependent drift-diffusion semiconductor equations. J. Differential Equations 123 (1995) 523-566.
-
(1995)
J. Differential Equations
, vol.123
, pp. 523-566
-
-
Fang, W.1
Ito, K.2
-
13
-
-
0037509741
-
On the uniqueness of solutions to the drift-diffusion model of semiconductor devices
-
H. Gajewski, On the uniqueness of solutions to the drift-diffusion model of semiconductor devices. Math. Models Methods Appl. Sci. 4 (1994) 121-133.
-
(1994)
Math. Models Methods Appl. Sci.
, vol.4
, pp. 121-133
-
-
Gajewski, H.1
-
14
-
-
0029544455
-
Numerical approximation of a drift-diffusion model for semiconductors with nonlinear diffusion
-
A. Jungel, Numerical approximation of a drift-diffusion model for semiconductors with nonlinear diffusion. ZAMM Z. Angew. Math. Mech. 75 (1995) 783-799.
-
(1995)
ZAMM Z. Angew. Math. Mech.
, vol.75
, pp. 783-799
-
-
Jungel, A.1
-
15
-
-
0031446598
-
A nonlinear drift-diffusion system with electric convection arising in semiconductor and electrophoretic modeling
-
A. Jüngel, A nonlinear drift-diffusion system with electric convection arising in semiconductor and electrophoretic modeling. Math. Nachr. 185 (1997) 85-110.
-
(1997)
Math. Nachr.
, vol.185
, pp. 85-110
-
-
Jüngel, A.1
-
16
-
-
0033475119
-
A hierarchy of hydrodynamic models for plasmas: Zero-relaxation-time limits
-
A. Jüngel and Y.J. Peng, A hierarchy of hydrodynamic models for plasmas: zero-relaxation-time limits. Comm. Partial Differential Equations 24 (1999) 1007-1033.
-
(1999)
Comm. Partial Differential Equations
, vol.24
, pp. 1007-1033
-
-
Jüngel, A.1
Peng, Y.J.2
-
17
-
-
0034342144
-
Zero-relaxation-time limits in the hydrodynamic equations for plasmas revisited
-
A. Jüngel and Y.J. Peng, Zero-relaxation-time limits in the hydrodynamic equations for plasmas revisited. Z. Angew. Math. Phys. 51 (2000) 385-396.
-
(2000)
Z. Angew. Math. Phys.
, vol.51
, pp. 385-396
-
-
Jüngel, A.1
Peng, Y.J.2
-
18
-
-
3242786235
-
A discretization scheme for a quasi-hydrodynamic semiconductor model
-
A. Jüngel and P, Pietra, A discretization scheme for a quasi-hydrodynamic semiconductor model. Math. Models Methods Appl. Sci. 7 (1997) 935-955.
-
(1997)
Math. Models Methods Appl. Sci.
, vol.7
, pp. 935-955
-
-
Jüngel, A.1
Pietra, P.2
|