-
2
-
-
0001870459
-
The dynamics of the Hénon map
-
[BC91]
-
[BC91] M. Benedicks and L. Carleson. The dynamics of the Hénon map. Ann. of Math., 133:73-169, 1991.
-
(1991)
Ann. of Math.
, vol.133
, pp. 73-169
-
-
Benedicks, M.1
Carleson, L.2
-
3
-
-
0002525106
-
Positive liapunov exponents and absolute continuity for maps of the interval
-
[CE83]
-
[CE83] P. Collet and J. P. Eckmann. Positive liapunov exponents and absolute continuity for maps of the interval. Ergod. Th. & Dynam. Sys., 3:13-46, 1983.
-
(1983)
Ergod. Th. & Dynam. Sys.
, vol.3
, pp. 13-46
-
-
Collet, P.1
Eckmann, J.P.2
-
7
-
-
0347108885
-
Strange attractors in saddle-node cycles: Prevalence and globality
-
[DRV96]
-
[DRV96] L. J. Díaz, J. Rocha, and M. Viana. Strange attractors in saddle-node cycles: prevalence and globality. Invent. Math., 125:37-74, 1996.
-
(1996)
Invent. Math.
, vol.125
, pp. 37-74
-
-
Díaz, L.J.1
Rocha, J.2
Viana, M.3
-
8
-
-
84974270217
-
Discontinuity of hausdorff dimension and limit capacity on arcs of diffeomorphisms
-
[DV89]
-
[DV89] L. J. Díaz and M. Viana. Discontinuity of hausdorff dimension and limit capacity on arcs of diffeomorphisms. Ergod. Th & Dynam. Sys., 9:403-425, 1989.
-
(1989)
Ergod. Th & Dynam. Sys.
, vol.9
, pp. 403-425
-
-
Díaz, L.J.1
Viana, M.2
-
9
-
-
0002053804
-
Absolutely continuous invariant measures for one-parameter families of one-dimensional maps
-
[Jak81]
-
[Jak81] M. Jakobson. Absolutely continuous invariant measures for one-parameter families of one-dimensional maps. Comm. Math. Phys., 81:39-88, 1981.
-
(1981)
Comm. Math. Phys.
, vol.81
, pp. 39-88
-
-
Jakobson, M.1
-
10
-
-
0038058271
-
Positive lyapunov exponents for Lorenz-like maps with criticalities
-
[LV00]
-
[LV00] S. Luzzatto and M. Viana. Positive lyapunov exponents for Lorenz-like maps with criticalities. Astérisque, 261:201-237, 2000.
-
(2000)
Astérisque
, vol.261
, pp. 201-237
-
-
Luzzatto, S.1
Viana, M.2
-
11
-
-
0038734717
-
Almost every every real quadratic map is either regular or stochastic
-
[Lyu]
-
[Lyu] M.Yu. Lyubich. Almost every every real quadratic map is either regular or stochastic. To appear in Annals of Math.
-
Annals of Math.
-
-
Lyubich, M.Y.1
-
12
-
-
51649164983
-
Bifurcations and stability of families of diffeomorphisms
-
[NPT83]
-
[NPT83] S. Newhouse, J. Palis, and F. Takens. Bifurcations and stability of families of diffeomorphisms. Publ. Math. I.H.E.S., 57:5-71, 1983.
-
(1983)
Publ. Math. I.H.E.S.
, vol.57
, pp. 5-71
-
-
Newhouse, S.1
Palis, J.2
Takens, F.3
-
13
-
-
0002046772
-
Invariant measures exist under a summability condition for unimodal maps
-
[NvS91]
-
[NvS91] T. Nowicki and S. van Strien. Invariant measures exist under a summability condition for unimodal maps. Invent. Math., 105:123-136, 1991.
-
(1991)
Invent. Math.
, vol.105
, pp. 123-136
-
-
Nowicki, T.1
Van Strien, S.2
-
14
-
-
0007390661
-
Coexistence and persistence of strange attractors in homoclinic saddle-focus connections
-
[PR97], Springer Verlag, Berlin
-
[PR97] A. Pumariño and A. Rodríguez. Coexistence and persistence of strange attractors in homoclinic saddle-focus connections, volume 1658 of Lect. Notes in Math. Springer Verlag, Berlin, 1997.
-
(1997)
Lect. Notes in Math.
, vol.1658
-
-
Pumariño, A.1
Rodríguez, A.2
-
15
-
-
0032265007
-
Infinite-modal maps with global chaotic behaviour
-
[PRV98]
-
[PRV98] M.J. Pacifico, A. Rovella, and M. Viana. Infinite-modal maps with global chaotic behaviour. Annals of Math., 148:441-484, 1998.
-
(1998)
Annals of Math.
, vol.148
, pp. 441-484
-
-
Pacifico, M.J.1
Rovella, A.2
Viana, M.3
-
16
-
-
0001273984
-
Stable orbits and bifurcations of maps of the interval
-
[Sin78]
-
[Sin78] D. Singer. Stable orbits and bifurcations of maps of the interval. SIAM J. Appl. Math., 35:260-267, 1978.
-
(1978)
SIAM J. Appl. Math.
, vol.35
, pp. 260-267
-
-
Singer, D.1
|