-
1
-
-
0003410592
-
-
[ALM00], World Scientific
-
[ALM00] L. Alseda, J. Llibre, and M. Misiurewicz. Combinatorial Dynamics and Entropy in Dimension One, volume 5 of Advanced Series in Nonlinear Dynamics. World Scientific, 2000.
-
(2000)
Combinatorial Dynamics and Entropy in Dimension One, Volume 5 of Advanced Series in Nonlinear Dynamics
, vol.5
-
-
Alseda, L.1
Llibre, J.2
Misiurewicz, M.3
-
2
-
-
38249035270
-
Generalizations of a theorem of Sarkovskii on orbits of continuous real-valued functions
-
[Bal87]
-
[Bal87] S. Baldwin. Generalizations of a theorem of Sarkovskii on orbits of continuous real-valued functions. Discrete Mathematics, 67:111-127, 1987.
-
(1987)
Discrete Mathematics
, vol.67
, pp. 111-127
-
-
Baldwin, S.1
-
3
-
-
0003440953
-
-
[BC91], Lecture Notes in Mathematics. Springer-Verlag
-
[BC91] L. Block and W. Coppel. Dynamics in One Dimension. Lecture Notes in Mathematics. Springer-Verlag, 1991.
-
(1991)
Dynamics in One Dimension
-
-
Block, L.1
Coppel, W.2
-
4
-
-
0033433865
-
Stable and unstable manifold structures in the Hénon family
-
[BD99]
-
[BD99] M. Barge and B, Diamond. Stable and unstable manifold structures in the Hénon family. Ergod. Th. and Dynam. Sys., 19:309-338, 1999.
-
(1999)
Ergod. Th. and Dynam. Sys.
, vol.19
, pp. 309-338
-
-
Barge, M.1
Diamond, B.2
-
6
-
-
0001631193
-
Functional rotation numbers for one-dimensional maps
-
[Blo95a], February
-
[Blo95a] A.M. Blokh. Functional rotation numbers for one-dimensional maps. Trans. Amer. Math. Soc., 347(2):499-513, February 1995.
-
(1995)
Trans. Amer. Math. Soc.
, vol.347
, Issue.2
, pp. 499-513
-
-
Blokh, A.M.1
-
7
-
-
0039141003
-
Rotation numbers, twists and a Sharkovskii-Misiurewicz-type ordering for patterns on the interval
-
[Blo95b]
-
[Blo95b] A.M. Blokh. Rotation numbers, twists and a Sharkovskii-Misiurewicz-type ordering for patterns on the interval. Ergod. Th. & Dynam. Sys., 15:1-14, 1995.
-
(1995)
Ergod. Th. & Dynam. Sys.
, vol.15
, pp. 1-14
-
-
Blokh, A.M.1
-
9
-
-
0035645409
-
Topological sequence entropy of w-limit sets of interval maps
-
[Can]
-
[Can] J.S. Cánovas. Topological sequence entropy of w-limit sets of interval maps. Discrete and Continuous Dynamical Systems, 7(4):781-786, 2001.
-
(2001)
Discrete and Continuous Dynamical Systems
, vol.7
, Issue.4
, pp. 781-786
-
-
Cánovas, J.S.1
-
13
-
-
84971110362
-
Rotation sets are closed
-
[Ito80]
-
[Ito80] R. Ito. Rotation sets are closed. Math. Proc. Camb. Phil. Soc., 89:107-111, 1980.
-
(1980)
Math. Proc. Camb. Phil. Soc.
, vol.89
, pp. 107-111
-
-
Ito, R.1
-
14
-
-
0000848698
-
On iterated maps of the interval
-
[MT88], number 1342 in Lecture Notes in Mathematics, Springer, Berlin
-
[MT88] J. Milnor and W. Thurston. On iterated maps of the interval. In Dynamical Systems, number 1342 in Lecture Notes in Mathematics, pages 465-563. Springer, Berlin, 1988.
-
(1988)
Dynamical Systems
, pp. 465-563
-
-
Milnor, J.1
Thurston, W.2
-
15
-
-
0002072428
-
Coexistence of cycles of a continuous map of the line into itself
-
[Sar64], in Russian
-
[Sar64] A.N. Sarkovskii. Coexistence of cycles of a continuous map of the line into itself. Ukr. Math. Z., 16:61-71, 1964. in Russian.
-
(1964)
Ukr. Math. Z.
, vol.16
, pp. 61-71
-
-
Sarkovskii, A.N.1
-
16
-
-
0001371112
-
A theorem of Šarkovskii on the existence of periodic orbits of continuous endomorphisms of the real line
-
[Š77]
-
[Š77] P. Štefan. A theorem of Šarkovskii on the existence of periodic orbits of continuous endomorphisms of the real line. Comm. Math. Phys., 54:237-248, 1977.
-
(1977)
Comm. Math. Phys.
, vol.54
, pp. 237-248
-
-
Štefan, P.1
|