메뉴 건너뛰기




Volumn 15, Issue 6, 2002, Pages 541-550

A dynamically generated fuzzy neural network and its application to torsional vibration control of tandem cold rolling mill spindles

Author keywords

Dynamically generated fuzzy neural network; Neurofuzzy control; Tandem cold rolling mill

Indexed keywords

ALGORITHMS; COLD ROLLING MILLS; DATA ACQUISITION; NEURAL NETWORKS; THREE TERM CONTROL SYSTEMS; VIBRATION CONTROL;

EID: 0038560988     PISSN: 09521976     EISSN: None     Source Type: Journal    
DOI: 10.1016/S0952-1976(03)00006-X     Document Type: Article
Times cited : (81)

References (48)
  • 1
    • 84945797434 scopus 로고
    • Dynamic node creation in backpropagation networks
    • Ash T. Dynamic node creation in backpropagation networks. Connection Science. 1(4):1989;365-375.
    • (1989) Connection Science , vol.1 , Issue.4 , pp. 365-375
    • Ash, T.1
  • 3
    • 0026923465 scopus 로고
    • Learning and tuning fuzzy logic controllers through reinforcements
    • Berenji H., Khedkar P. Learning and tuning fuzzy logic controllers through reinforcements. IEEE Transactions on Neural Networks. 3(5):1993;724-740.
    • (1993) IEEE Transactions on Neural Networks , vol.3 , Issue.5 , pp. 724-740
    • Berenji, H.1    Khedkar, P.2
  • 7
    • 0024861871 scopus 로고
    • Approximations by superposition of a sigmoidal function
    • Cybenko G. Approximations by superposition of a sigmoidal function. Mathematics of Control, Signals, and Systems. 2:1989;303-314.
    • (1989) Mathematics of Control, Signals, and Systems , vol.2 , pp. 303-314
    • Cybenko, G.1
  • 8
    • 0011714171 scopus 로고
    • Some research directions in fuzzy control
    • H. Nguyen, M. Sugeno, R. Tong, & R. Yager. New York: Wiley
    • Driankov D., Hellendoorn H., Palm R. Some research directions in fuzzy control. Nguyen H., Sugeno M., Tong R., Yager R. Theoretical Aspects of Fuzzy Control. 1995;281-312 Wiley, New York.
    • (1995) Theoretical Aspects of Fuzzy Control , pp. 281-312
    • Driankov, D.1    Hellendoorn, H.2    Palm, R.3
  • 9
    • 0003149038 scopus 로고
    • A unifying view of comparison indices in a fuzzy set theoretic framework
    • R.R. Yager. New York: Pergamon
    • Dubois D., Prade H. A unifying view of comparison indices in a fuzzy set theoretic framework. Yager R.R. Fuzzy Sets and Possibility Theory: Recent Developments. 1982;Pergamon, New York.
    • (1982) Fuzzy Sets and Possibility Theory: Recent Developments
    • Dubois, D.1    Prade, H.2
  • 10
    • 26444565569 scopus 로고
    • Finding structure in time
    • Elman J. Finding structure in time. Cognitive Science. 14(2):1990;179-211.
    • (1990) Cognitive Science , vol.14 , Issue.2 , pp. 179-211
    • Elman, J.1
  • 11
    • 0003000735 scopus 로고
    • Faster-learning variations on back-propagation: An empirical study
    • T. Sejnowski, G. Hinton, & D. Touretzky. San Mateo, CA: Morgan Kaufmann
    • Fahlman S. Faster-learning variations on back-propagation: an empirical study. Sejnowski T., Hinton G., Touretzky D. 1988 Connectionist Models Summer School. 1988;38-51 Morgan Kaufmann, San Mateo, CA.
    • (1988) 1988 Connectionist Models Summer School , pp. 38-51
    • Fahlman, S.1
  • 12
  • 13
    • 0000155950 scopus 로고
    • The cascade-correlation learning architecture
    • Touretzky, D.S. (Ed.), Morgan Kaufmann, San Mateo, CA
    • Fahlman, S., Lebiere, C., 1990. The cascade-correlation learning architecture. In: Touretzky, D.S. (Ed.), Advances in Neural Information Processing Systems, Vol. 2. Morgan Kaufmann, San Mateo, CA, pp. 524-532.
    • (1990) Advances in Neural Information Processing Systems , vol.2 , pp. 524-532
    • Fahlman, S.1    Lebiere, C.2
  • 14
    • 0000783575 scopus 로고
    • The upstart algorithm: A method for constructing and training feedforward neural networks
    • Frean M. The upstart algorithm. a method for constructing and training feedforward neural networks Neural Computation. 1:1990;198-209.
    • (1990) Neural Computation , vol.1 , pp. 198-209
    • Frean, M.1
  • 15
    • 0027154319 scopus 로고
    • Approximation of dynamical systems by continuous time recurrent neural networks
    • Funahashi K., Nakamura Y. Approximation of dynamical systems by continuous time recurrent neural networks. Neural Networks. 6(6):1993;801-806.
    • (1993) Neural Networks , vol.6 , Issue.6 , pp. 801-806
    • Funahashi, K.1    Nakamura, Y.2
  • 16
    • 0029341578 scopus 로고
    • Constructive learning of recurrent neural networks: Limitations of recurrent cascade correlation and a simple solution
    • Giles C.L., Chen D., Sun G.Z., Chen H.H., Lee Y.C., Goudreau M.W. Constructive learning of recurrent neural networks. limitations of recurrent cascade correlation and a simple solution IEEE Transactions on Neural Networks. 6:1995;829-836.
    • (1995) IEEE Transactions on Neural Networks , vol.6 , pp. 829-836
    • Giles, C.L.1    Chen, D.2    Sun, G.Z.3    Chen, H.H.4    Lee, Y.C.5    Goudreau, M.W.6
  • 21
    • 0024880831 scopus 로고
    • Multilayer feedforward networks are universal approximators
    • Hornik K., Stinchcombe M., White H. Multilayer feedforward networks are universal approximators. Neural Networks. 2(5):1989;359-366.
    • (1989) Neural Networks , vol.2 , Issue.5 , pp. 359-366
    • Hornik, K.1    Stinchcombe, M.2    White, H.3
  • 22
    • 0026954775 scopus 로고
    • Neural networks for control systems - A survey
    • Hunt K., Sbarbaro D., Zbikowski R., Gawthrop P. Neural networks for control systems - a survey. Automatica. 28(6):1992;1083-1112.
    • (1992) Automatica , vol.28 , Issue.6 , pp. 1083-1112
    • Hunt, K.1    Sbarbaro, D.2    Zbikowski, R.3    Gawthrop, P.4
  • 26
    • 0032681147 scopus 로고    scopus 로고
    • A recurrent self-organizing neural fuzzy inference network
    • Juang C., Lin C. A recurrent self-organizing neural fuzzy inference network. IEEE Transactions on Neural Networks. 10(4):1999;828-845.
    • (1999) IEEE Transactions on Neural Networks , vol.10 , Issue.4 , pp. 828-845
    • Juang, C.1    Lin, C.2
  • 30
    • 0028369322 scopus 로고
    • Reinforcement structure/parameter learning for neural-network-based fuzzy logic control systems
    • Lin C.-T., Lee C.S.G. Reinforcement structure/parameter learning for neural-network-based fuzzy logic control systems. IEEE Transactions on Fuzzy Systems. 2(1):1994;46-63.
    • (1994) IEEE Transactions on Fuzzy Systems , vol.2 , Issue.1 , pp. 46-63
    • Lin, C.-T.1    Lee, C.S.G.2
  • 31
    • 36149031331 scopus 로고
    • Learning in feedforward layered networks: The tiling algorithms
    • Mezard M., Nadal J. Learning in feedforward layered networks. the tiling algorithms Journal of Physics A. 22:1989;2191-2203.
    • (1989) Journal of Physics A , vol.22 , pp. 2191-2203
    • Mezard, M.1    Nadal, J.2
  • 32
    • 0001958391 scopus 로고
    • Study of a growth algorithm for feedforward neural network
    • Nadal J. Study of a growth algorithm for feedforward neural network. International Journal of Neural Systems. 1:1989;55-59.
    • (1989) International Journal of Neural Systems , vol.1 , pp. 55-59
    • Nadal, J.1
  • 33
    • 0028137961 scopus 로고
    • Adaptive control of nonlinear multivariable systems using neural networks
    • Narendra K., Mukhopadhyay S. Adaptive control of nonlinear multivariable systems using neural networks. Neural Networks. 7(5):1994;737-752.
    • (1994) Neural Networks , vol.7 , Issue.5 , pp. 737-752
    • Narendra, K.1    Mukhopadhyay, S.2
  • 34
    • 0025399567 scopus 로고
    • Identification and control of dynamical systems using neural networks
    • Narendra K., Pathasarathy K. Identification and control of dynamical systems using neural networks. IEEE Transactions on Neural Networks. 1(1):1990;4-27.
    • (1990) IEEE Transactions on Neural Networks , vol.1 , Issue.1 , pp. 4-27
    • Narendra, K.1    Pathasarathy, K.2
  • 35
    • 52149110874 scopus 로고
    • A fuzzy neural network learning fuzzy control rules and membership functions by fuzzy error backpropagation
    • San Francisco, CA
    • Nauck, D., Kruse, R., 1993. A fuzzy neural network learning fuzzy control rules and membership functions by fuzzy error backpropagation. In: Proceedings of the IEEE International Conference on Neural Networks ICNN'93, San Francisco, CA, pp. 1022-1027.
    • (1993) Proceedings of the IEEE International Conference on Neural Networks ICNN'93 , pp. 1022-1027
    • Nauck, D.1    Kruse, R.2
  • 37
    • 0027695354 scopus 로고
    • Learning control using fuzzified self-organizing radial basis function network
    • Nie J., Linkens D. Learning control using fuzzified self-organizing radial basis function network. IEEE Transactions on Fuzzy Systems. 1(4):1993;280-287.
    • (1993) IEEE Transactions on Fuzzy Systems , vol.1 , Issue.4 , pp. 280-287
    • Nie, J.1    Linkens, D.2
  • 41
    • 0003421109 scopus 로고
    • Version 4.1, University of Stuttgart, Institute for Parallel and Distributed High Performance Systems (IPVR), 6/95
    • SNNS (Stuttgart Neural Network Simulator) User Manual, 1995. Version 4.1, University of Stuttgart, Institute for Parallel and Distributed High Performance Systems (IPVR), 6/95.
    • (1995) SNNS (Stuttgart Neural Network Simulator) User Manual
  • 42
    • 0000185305 scopus 로고
    • Successive identification of fuzzy model and its application to prediction of complex system
    • Sugeno M., Tanaka K. Successive identification of fuzzy model and its application to prediction of complex system. Fuzzy Sets and Systems. 42:1991;315-344.
    • (1991) Fuzzy Sets and Systems , vol.42 , pp. 315-344
    • Sugeno, M.1    Tanaka, K.2
  • 43
    • 0021892282 scopus 로고
    • Fuzzy identification of systems and its applications to modelling and control
    • Takagi T., Sugeno M. Fuzzy identification of systems and its applications to modelling and control. IEEE Transactions on Systems, Man and Cybernetics. 15(1):1985;116-132.
    • (1985) IEEE Transactions on Systems, Man and Cybernetics , vol.15 , Issue.1 , pp. 116-132
    • Takagi, T.1    Sugeno, M.2
  • 45
    • 0029406441 scopus 로고
    • Building sugeno-type models using fuzzy discretization and orthogonal parameter estimation techniques
    • Wang L., Langari R. Building Sugeno-type models using fuzzy discretization and orthogonal parameter estimation techniques. IEEE Transactions on Fuzzy Systems. 3:1995;454-458.
    • (1995) IEEE Transactions on Fuzzy Systems , vol.3 , pp. 454-458
    • Wang, L.1    Langari, R.2
  • 46
    • 0026928374 scopus 로고
    • Fuzzy basis functions, universal approximation, and orthogonal least-squares learning
    • Wang L.-X., Mendel J. Fuzzy basis functions, universal approximation, and orthogonal least-squares learning. IEEE Transactions on Neural Networks. 3(5):1992;807-814.
    • (1992) IEEE Transactions on Neural Networks , vol.3 , Issue.5 , pp. 807-814
    • Wang, L.-X.1    Mendel, J.2
  • 48
    • 0037700575 scopus 로고
    • Subgrouping reduces complexity and speeds up learning in recurrent networks
    • Touretzky, D.S. (Ed.), Morgan Kaufmann, San Mateo, CA
    • Zipser, D., 1990. Subgrouping reduces complexity and speeds up learning in recurrent networks. In: Touretzky, D.S. (Ed.), Advances in Neural Information Processing Systems, Vol. 2. Morgan Kaufmann, San Mateo, CA, pp. 638-641.
    • (1990) Advances in Neural Information Processing Systems , vol.2 , pp. 638-641
    • Zipser, D.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.