-
1
-
-
0000570459
-
Liquid crystal diffraction grating
-
T. O. Carroll, “Liquid crystal diffraction grating,” J. Appl. Phys. 43, 767–770 (1972).
-
(1972)
J. Appl. Phys
, vol.43
, pp. 767-770
-
-
Carroll, T.O.1
-
2
-
-
0015672860
-
Diffraction from a liquid crystal diffraction grating
-
R. A. Kashnow and J. E. Bigelow, “Diffraction from a liquid crystal diffraction grating,” Appl. Opt. 12, 2302–2304 (1973).
-
(1973)
Appl. Opt
, vol.12
, pp. 2302-2304
-
-
Kashnow, R.A.1
Bigelow, J.E.2
-
3
-
-
0020127174
-
Optical properties of williams domains
-
S. Hirata and T. Tako, “Optical properties of Williams domains,” Jpn. J. Appl. Phys. 21, 675–679 (1982).
-
(1982)
Jpn. J. Appl. Phys
, vol.21
, pp. 675-679
-
-
Hirata, S.1
Tako, T.2
-
4
-
-
0009537442
-
Light propagation in williams domains as analysed numerically by geometrical optics
-
K. Kondo, M. Arakawa, A. Fukuda, and E. Kuze, “Light propagation in Williams domains as analysed numerically by geometrical optics,” Jpn. J. Appl. Phys. 22, 394–399 (1983).
-
(1983)
Jpn. J. Appl. Phys
, vol.22
, pp. 394-399
-
-
Kondo, K.1
Arakawa, M.2
Fukuda, A.3
Kuze, E.4
-
5
-
-
0028409824
-
Symmetry properties of anisotropic dielectric gratings
-
P. Galatola, C. Oldano, and P. B. Sunil Kumar, “Symmetry properties of anisotropic dielectric gratings,” J. Opt. Soc. Am. A 11, 1332–1341 (1994).
-
(1994)
J. Opt. Soc. Am
, vol.A11
, pp. 1332-1341
-
-
Galatola, P.1
Oldano, C.2
Sunil Kumar, P.B.3
-
6
-
-
0028419830
-
A geometrical model for the propagation of rays in an anisotropic inhomogeneous medium
-
A. Joetz and R. Ribotta, “A geometrical model for the propagation of rays in an anisotropic inhomogeneous medium,” Opt. Commun. 107, 200–204 (1994).
-
(1994)
Opt. Commun
, vol.107
, pp. 200-204
-
-
Joetz, A.1
Ribotta, R.2
-
7
-
-
84975571780
-
Geometrical optics approach to the nematic liquid crystal grating: Numerical results
-
J. A. Kosmopoulos and H. M. Zenginoglou, “Geometrical optics approach to the nematic liquid crystal grating: numerical results,” Appl. Opt. 26, 1714–1721 (1987).
-
(1987)
Appl. Opt
, vol.26
, pp. 1714-1721
-
-
Kosmopoulos, J.A.1
Zenginoglou, H.M.2
-
8
-
-
0038163977
-
Geometrical optics approach to the obliquely illuminated nematic liquid crystal diffraction grating
-
H. M. Zenginoglou and J. A. Kosmopoulos, “Geometrical optics approach to the obliquely illuminated nematic liquid crystal diffraction grating,” Appl. Opt. 27, 3898–3901 (1988).
-
(1988)
Appl. Opt
, vol.27
, pp. 3898-3901
-
-
Zenginoglou, H.M.1
Kosmopoulos, J.A.2
-
9
-
-
84952402688
-
Geometrical optics approach to the nematic liquid crystal grating: Leading term formulas
-
H. M. Zenginoglou and J. A. Kosmopoulos, “Geometrical optics approach to the nematic liquid crystal grating: leading term formulas,” Appl. Opt. 28, 3516–3519 (1989).
-
(1989)
Appl. Opt
, vol.28
, pp. 3516-3519
-
-
Zenginoglou, H.M.1
Kosmopoulos, J.A.2
-
10
-
-
11144317938
-
-
Academic, New York, where an extensive analysis of all types of instabilities as well as a large number of related references can be found
-
Solid State Physics Supplement 14: Liquid Crystals (Academic, New York, 1978), pp. 147–208, where an extensive analysis of all types of instabilities as well as a large number of related references can be found.
-
(1978)
Solid State Physics Supplement 14: Liquid Crystals
, pp. 147-208
-
-
|