-
8
-
-
36149008019
-
-
Zak J 1964 Phys. Rev. 134 A1602 Zak J 1964 Phys. Rev. 134 A1607
-
(1964)
Phys. Rev.
, vol.134
-
-
Zak, J.1
-
9
-
-
36149005273
-
-
Zak J 1964 Phys. Rev. 134 A1602 Zak J 1964 Phys. Rev. 134 A1607
-
(1964)
Phys. Rev.
, vol.134
-
-
Zak, J.1
-
13
-
-
0000653017
-
-
Engl. Transl.
-
Azbel M Ya 1964 Zh. Eksp. Teor. Fiz. 46 929 (Engl. Transl. 1964 Sov. Phys.-JETP 19 634)
-
(1964)
Sov. Phys.-JETP
, vol.19
, pp. 634
-
-
-
15
-
-
84987157216
-
-
Wannier G H 1978 Phys. Status Solidi b 88 757 Wannier G H, Obermair G M and Ray R 1979 Phys. Status Solidi b 93 337
-
(1978)
Phys. Status Solidi B
, vol.88
, pp. 757
-
-
Wannier, G.H.1
-
21
-
-
5344254750
-
-
ed K Fujikawa and Y A Ono (Amsterdam: North-Holland)
-
Hatsugai Y 1996 Quantum Coherence and Decoherence ed K Fujikawa and Y A Ono (Amsterdam: North-Holland) p 167
-
(1996)
Quantum Coherence and Decoherence
, pp. 167
-
-
Hatsugai, Y.1
-
28
-
-
5344279891
-
-
in preparation
-
Hatsugai Y 1997 in preparation
-
(1997)
-
-
Hatsugai, Y.1
-
29
-
-
0003414482
-
-
ed R E Prange and S M Girvin (Berlin: Springer)
-
See Haldane F D M 1987 The Quantum Hall Effect ed R E Prange and S M Girvin (Berlin: Springer)
-
(1987)
The Quantum Hall Effect
-
-
Haldane, F.D.M.1
-
30
-
-
5344227734
-
-
private communication
-
Wu Y-S, private communication
-
-
-
Wu, Y.-S.1
-
50
-
-
21144462304
-
-
The theory of the non-linear lattice is applied to the problem of a one-dimensional quasi-crystal by Iguchi K 1992 J. Math. Phys. 33 3938
-
(1992)
J. Math. Phys.
, vol.33
, pp. 3938
-
-
Iguchi, K.1
-
51
-
-
5344279890
-
-
21(∈) are simple, as shown in appendix C
-
21(∈) are simple, as shown in appendix C.
-
-
-
-
52
-
-
5344245553
-
-
qk+1 in general
-
qk+1 in general.
-
-
-
-
55
-
-
5344278414
-
-
note
-
2 = 4, which is similar to equation (110).
-
-
-
-
56
-
-
5344263898
-
-
note
-
q.
-
-
-
-
57
-
-
0001001046
-
-
Charge transport is also discussed in the following references: Tešanović Z, Axel F and Halperin B I 1989 Phys. Rev B 39 8525 Kunz H 1986 Phys. Rev. Lett. 57 1095 Thouless D J 1983 Phys. Rev. B 27 6083 MacDonald A H 1983 Phys. Rev. B 28 6713
-
(1989)
Phys. Rev B
, vol.39
, pp. 8525
-
-
Tešanović, Z.1
Axel, F.2
Halperin, B.I.3
-
58
-
-
5344247417
-
-
Charge transport is also discussed in the following references: Tešanović Z, Axel F and Halperin B I 1989 Phys. Rev B 39 8525 Kunz H 1986 Phys. Rev. Lett. 57 1095 Thouless D J 1983 Phys. Rev. B 27 6083 MacDonald A H 1983 Phys. Rev. B 28 6713
-
(1986)
Phys. Rev. Lett.
, vol.57
, pp. 1095
-
-
Kunz, H.1
-
59
-
-
33644561837
-
-
Charge transport is also discussed in the following references: Tešanović Z, Axel F and Halperin B I 1989 Phys. Rev B 39 8525 Kunz H 1986 Phys. Rev. Lett. 57 1095 Thouless D J 1983 Phys. Rev. B 27 6083 MacDonald A H 1983 Phys. Rev. B 28 6713
-
(1983)
Phys. Rev. B
, vol.27
, pp. 6083
-
-
Thouless, D.J.1
-
60
-
-
0001560031
-
-
Charge transport is also discussed in the following references: Tešanović Z, Axel F and Halperin B I 1989 Phys. Rev B 39 8525 Kunz H 1986 Phys. Rev. Lett. 57 1095 Thouless D J 1983 Phys. Rev. B 27 6083 MacDonald A H 1983 Phys. Rev. B 28 6713
-
(1983)
Phys. Rev. B
, vol.28
, pp. 6713
-
-
MacDonald, A.H.1
-
63
-
-
5344231484
-
-
These degenerate zero modes in the infinite system were investigated using topological methods by Wen and Zee [48] in detail
-
These degenerate zero modes in the infinite system were investigated using topological methods by Wen and Zee [48] in detail.
-
-
-
-
65
-
-
5344276718
-
-
Even if we include the next-nearest-neighbour hoppings, it is still possible to reduce the problem to a one-dimensional one [49] and to define the Riemann surface of the Bloch function
-
Even if we include the next-nearest-neighbour hoppings, it is still possible to reduce the problem to a one-dimensional one [49] and to define the Riemann surface of the Bloch function.
-
-
-
|