-
1
-
-
0039048754
-
A sandwich proof of the Shannon-McMillan-Breiman theorem
-
Algoet P.H., Cover T.M. A sandwich proof of the Shannon-McMillan-Breiman theorem. Ann. Probab. 16:1988;899-909.
-
(1988)
Ann. Probab.
, vol.16
, pp. 899-909
-
-
Algoet, P.H.1
Cover, T.M.2
-
2
-
-
0000039074
-
The strong ergodic theorem for densities: Generalized Shannon-McMillan-Breiman theorem
-
Barron A.R. The strong ergodic theorem for densities: generalized Shannon-McMillan-Breiman theorem. Ann. Probab. 13:1985;1292-1303.
-
(1985)
Ann. Probab.
, vol.13
, pp. 1292-1303
-
-
Barron, A.R.1
-
4
-
-
0001531440
-
The individual ergodic theorem of information theory
-
Breiman L. The individual ergodic theorem of information theory. Ann. Math. Statist. 28:1957;809-811.
-
(1957)
Ann. Math. Statist.
, vol.28
, pp. 809-811
-
-
Breiman, L.1
-
5
-
-
0000931548
-
The ergodic theorem of information theory
-
Chung K.L. The ergodic theorem of information theory. Ann. Math. Statist. 32:1961;612-614.
-
(1961)
Ann. Math. Statist.
, vol.32
, pp. 612-614
-
-
Chung, K.L.1
-
8
-
-
0001506674
-
Asymptotically mean stationary measure
-
Gray R.M., Kieffer J.G. Asymptotically mean stationary measure. Ann. Probab. 8:1980;962-973.
-
(1980)
Ann. Probab.
, vol.8
, pp. 962-973
-
-
Gray, R.M.1
Kieffer, J.G.2
-
9
-
-
0001529995
-
A counterexample to Perez's generalization of the Shannon-McMillan theorem
-
Kieffer, J.C., 1973. A counterexample to Perez's generalization of the Shannon-McMillan theorem. Ann. Probab. 1, 362-364. Correction 4, 153-154, 1976.
-
(1973)
Ann. Probab.
, vol.1
, pp. 362-364
-
-
Kieffer, J.C.1
-
10
-
-
0041605776
-
-
Kieffer, J.C., 1973. A counterexample to Perez's generalization of the Shannon-McMillan theorem. Ann. Probab. 1, 362-364. Correction 4, 153-154, 1976.
-
(1976)
Correction
, vol.4
, pp. 153-154
-
-
-
11
-
-
84972553299
-
A Simple proof of Moy-Perez generalization of Shannon-McMillan theorem
-
Kieffer J.C. A Simple proof of Moy-Perez generalization of Shannon-McMillan theorem. Pacific J. Math. 51:1974;203-204.
-
(1974)
Pacific J. Math.
, vol.51
, pp. 203-204
-
-
Kieffer, J.C.1
-
14
-
-
0000271489
-
Relative entropy densities and a class of limit theorems of the sequence of m -valued random variables
-
Liu W. Relative entropy densities and a class of limit theorems of the sequence of. m -valued random variables Ann. Probab. 18:1990;829-839.
-
(1990)
Ann. Probab.
, vol.18
, pp. 829-839
-
-
Liu, W.1
-
15
-
-
0029690375
-
A extension of Shannon-McMillan theorem and some limit properties for nonhomogeneous Markov chains
-
Liu W., Yang W. A extension of Shannon-McMillan theorem and some limit properties for nonhomogeneous Markov chains. Stochastic Process. Appl. 61:1996;129-145.
-
(1996)
Stochastic Process. Appl.
, vol.61
, pp. 129-145
-
-
Liu, W.1
Yang, W.2
-
16
-
-
0001413858
-
The basic theorems of information theory
-
McMillan B. The basic theorems of information theory. Ann. Math. Statist. 24:1953;196-216.
-
(1953)
Ann. Math. Statist.
, vol.24
, pp. 196-216
-
-
McMillan, B.1
-
17
-
-
84940644968
-
A mathematical theory of communication
-
623-656
-
Shannon, C., 1948. A mathematical theory of communication. Bell System Tech. J. 27 379-423, 623-656.
-
(1948)
Bell System Tech. J.
, vol.27
, pp. 379-423
-
-
Shannon, C.1
|