메뉴 건너뛰기




Volumn 89, Issue 1, 2000, Pages 117-130

The Markov approximation of the sequences of N -valued random variables and a class of small deviation theorems

Author keywords

Entropy; Entropy density; Primary 94A17; Sample divergence rate; Secondary 60F15; Shannon McMillan theorem; Small deviation theorem

Indexed keywords


EID: 0038465692     PISSN: 03044149     EISSN: None     Source Type: Journal    
DOI: 10.1016/S0304-4149(00)00016-8     Document Type: Article
Times cited : (40)

References (17)
  • 1
    • 0039048754 scopus 로고
    • A sandwich proof of the Shannon-McMillan-Breiman theorem
    • Algoet P.H., Cover T.M. A sandwich proof of the Shannon-McMillan-Breiman theorem. Ann. Probab. 16:1988;899-909.
    • (1988) Ann. Probab. , vol.16 , pp. 899-909
    • Algoet, P.H.1    Cover, T.M.2
  • 2
    • 0000039074 scopus 로고
    • The strong ergodic theorem for densities: Generalized Shannon-McMillan-Breiman theorem
    • Barron A.R. The strong ergodic theorem for densities: generalized Shannon-McMillan-Breiman theorem. Ann. Probab. 13:1985;1292-1303.
    • (1985) Ann. Probab. , vol.13 , pp. 1292-1303
    • Barron, A.R.1
  • 4
    • 0001531440 scopus 로고
    • The individual ergodic theorem of information theory
    • Breiman L. The individual ergodic theorem of information theory. Ann. Math. Statist. 28:1957;809-811.
    • (1957) Ann. Math. Statist. , vol.28 , pp. 809-811
    • Breiman, L.1
  • 5
    • 0000931548 scopus 로고
    • The ergodic theorem of information theory
    • Chung K.L. The ergodic theorem of information theory. Ann. Math. Statist. 32:1961;612-614.
    • (1961) Ann. Math. Statist. , vol.32 , pp. 612-614
    • Chung, K.L.1
  • 8
    • 0001506674 scopus 로고
    • Asymptotically mean stationary measure
    • Gray R.M., Kieffer J.G. Asymptotically mean stationary measure. Ann. Probab. 8:1980;962-973.
    • (1980) Ann. Probab. , vol.8 , pp. 962-973
    • Gray, R.M.1    Kieffer, J.G.2
  • 9
    • 0001529995 scopus 로고
    • A counterexample to Perez's generalization of the Shannon-McMillan theorem
    • Kieffer, J.C., 1973. A counterexample to Perez's generalization of the Shannon-McMillan theorem. Ann. Probab. 1, 362-364. Correction 4, 153-154, 1976.
    • (1973) Ann. Probab. , vol.1 , pp. 362-364
    • Kieffer, J.C.1
  • 10
    • 0041605776 scopus 로고
    • Kieffer, J.C., 1973. A counterexample to Perez's generalization of the Shannon-McMillan theorem. Ann. Probab. 1, 362-364. Correction 4, 153-154, 1976.
    • (1976) Correction , vol.4 , pp. 153-154
  • 11
    • 84972553299 scopus 로고
    • A Simple proof of Moy-Perez generalization of Shannon-McMillan theorem
    • Kieffer J.C. A Simple proof of Moy-Perez generalization of Shannon-McMillan theorem. Pacific J. Math. 51:1974;203-204.
    • (1974) Pacific J. Math. , vol.51 , pp. 203-204
    • Kieffer, J.C.1
  • 14
    • 0000271489 scopus 로고
    • Relative entropy densities and a class of limit theorems of the sequence of m -valued random variables
    • Liu W. Relative entropy densities and a class of limit theorems of the sequence of. m -valued random variables Ann. Probab. 18:1990;829-839.
    • (1990) Ann. Probab. , vol.18 , pp. 829-839
    • Liu, W.1
  • 15
    • 0029690375 scopus 로고    scopus 로고
    • A extension of Shannon-McMillan theorem and some limit properties for nonhomogeneous Markov chains
    • Liu W., Yang W. A extension of Shannon-McMillan theorem and some limit properties for nonhomogeneous Markov chains. Stochastic Process. Appl. 61:1996;129-145.
    • (1996) Stochastic Process. Appl. , vol.61 , pp. 129-145
    • Liu, W.1    Yang, W.2
  • 16
    • 0001413858 scopus 로고
    • The basic theorems of information theory
    • McMillan B. The basic theorems of information theory. Ann. Math. Statist. 24:1953;196-216.
    • (1953) Ann. Math. Statist. , vol.24 , pp. 196-216
    • McMillan, B.1
  • 17
    • 84940644968 scopus 로고
    • A mathematical theory of communication
    • 623-656
    • Shannon, C., 1948. A mathematical theory of communication. Bell System Tech. J. 27 379-423, 623-656.
    • (1948) Bell System Tech. J. , vol.27 , pp. 379-423
    • Shannon, C.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.