메뉴 건너뛰기




Volumn 144, Issue 2-3, 2003, Pages 381-388

An improved regula falsi method with quadratic convergence of both diameter and point for enclosing simple zeros of nonlinear equations

Author keywords

High order of convergence; Iteration method; Nonlinear equations; Regula falsi; Root finding

Indexed keywords

CONVERGENCE OF NUMERICAL METHODS; FUNCTIONS; ITERATIVE METHODS;

EID: 0038451467     PISSN: 00963003     EISSN: None     Source Type: Journal    
DOI: 10.1016/S0096-3003(02)00414-9     Document Type: Article
Times cited : (23)

References (6)
  • 1
    • 0038448410 scopus 로고
    • A modified regula falsi method for computing the root of an equation
    • Dowell M., Jarratt D. A modified regula falsi method for computing the root of an equation. BIT. 11:1971;168-174.
    • (1971) BIT , vol.11 , pp. 168-174
    • Dowell, M.1    Jarratt, D.2
  • 2
    • 0004536447 scopus 로고
    • The "Pegasus" method for computing the root of an equation
    • Dowell M., Jarratt D. The "Pegasus" method for computing the root of an equation. BIT. 12:1972;503-508.
    • (1972) BIT , vol.12 , pp. 503-508
    • Dowell, M.1    Jarratt, D.2
  • 3
    • 0038786028 scopus 로고
    • An improved Pegasus method for root finding
    • Richard F.K. An improved Pegasus method for root finding. BIT. 13:1973;423-427.
    • (1973) BIT , vol.13 , pp. 423-427
    • Richard, F.K.1
  • 5
    • 0005927016 scopus 로고
    • Some efficient methods for enclosing simple zeroes of nonlinear equations
    • Alefeld G., Potra F.A. Some efficient methods for enclosing simple zeroes of nonlinear equations. BIT. 32:1992;334-344.
    • (1992) BIT , vol.32 , pp. 334-344
    • Alefeld, G.1    Potra, F.A.2
  • 6
    • 84968484508 scopus 로고
    • On enclosing simple roots of nonlinear equations
    • Alefeld G., Potra F.A., Shi Y.X. On enclosing simple roots of nonlinear equations. Math. Comput. 61:1993;733-744.
    • (1993) Math. Comput. , vol.61 , pp. 733-744
    • Alefeld, G.1    Potra, F.A.2    Shi, Y.X.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.