메뉴 건너뛰기




Volumn 11, Issue 4, 2002, Pages 513-526

Computing amoebas

Author keywords

Amoebas; Grassmannian; Homotopy continuation methods; Ideals; Laurent polynomials; Varieties

Indexed keywords


EID: 0038445303     PISSN: 10586458     EISSN: 1944950X     Source Type: Journal    
DOI: 10.1080/10586458.2002.10504703     Document Type: Article
Times cited : (32)

References (23)
  • 1
    • 0036901031 scopus 로고    scopus 로고
    • Real Solving for Positive Dimensional Systems
    • Ph. Aubry, F. Rouillier, and M. Safey El Din. “Real Solving for Positive Dimensional Systems.” J. Symb. Comp. 34 (2002), 543-560.
    • (2002) J. Symb. Comp , vol.34 , pp. 543-560
    • Aubry, P.H.1    Rouillier, F.2    Safey El Din, M.3
  • 2
    • 0022706013 scopus 로고
    • The Complexity of Elementary Algebra and Geometry
    • M. Ben-Or, D. Kozen, and J. Reif. “The Complexity of Elementary Algebra and Geometry.” J. Computer and System Sciences 32 (1986), 251-264.
    • (1986) J. Computer and System Sciences , vol.32 , pp. 251-264
    • Ben-Or, M.1    Kozen, D.2    Reif, J.3
  • 3
    • 84968484108 scopus 로고
    • Computing the Equations of a Variety
    • M. Burundu and M. Stillman. “Computing the Equations of a Variety.” Trans. Am. Math. Soc. 337 (1993), 677-690.
    • (1993) Trans. Am. Math. Soc , vol.337 , pp. 677-690
    • Burundu, M.1    Stillman, M.2
  • 4
    • 85029837057 scopus 로고
    • Quantifier Elimination for Real Closed Fields by Cylindrical Algebraic Decomposition
    • Lecture Notes in Computer Science, Berlin: Springer-Verlag
    • G.E. Collins. “Quantifier Elimination for Real Closed Fields by Cylindrical Algebraic Decomposition.” In Proc. Automated Theory and Formal Languages, pp. 134-183, Lecture Notes in Computer Science vol. 33. Berlin: Springer-Verlag, 1975.
    • (1975) Proc. Automated Theory and Formal Languages , vol.33 , pp. 134-183
    • Collins, G.E.1
  • 8
    • 0037760144 scopus 로고    scopus 로고
    • Projective Geometry and Homological Algebra
    • edited by D. Eisenbud, D. Grayson, M. Stillman, and B. Sturmfels. Berlin: Springer-Verlag
    • D. Eisenbud. “Projective Geometry and Homological Algebra.” In Computations in Algebraic Geometry with Macaulay 2, edited by D. Eisenbud, D. Grayson, M. Stillman, and B. Sturmfels. Berlin: Springer-Verlag, 2001.
    • (2001) Computations in Algebraic Geometry with Macaulay 2
    • Eisenbud, D.1
  • 9
    • 0002297211 scopus 로고    scopus 로고
    • Laurent Determinants and Arrangements of Hyperplane Amoebas
    • M. Forsberg, M. Passare, and A. Tsikh. “Laurent Determinants and Arrangements of Hyperplane Amoebas.” Adv. Math. 151 (2000), 45-70.
    • (2000) Adv. Math , vol.151 , pp. 45-70
    • Forsberg, M.1    Passare, M.2    Tsikh, A.3
  • 13
    • 85025493187 scopus 로고
    • Jr. “Solving Systems of Polynomial Inequalities in Subexponential Time
    • D. Y. Grigor'ev and N. N. Vorobjov, Jr. “Solving Systems of Polynomial Inequalities in Subexponential Time.” J. Symb. Comp. 5 (1988), 37-64.
    • (1988) J. Symb. Comp , vol.5 , pp. 37-64
    • Grigor'ev, D.Y.1    Vorobjov, N.N.2
  • 15
    • 0034344811 scopus 로고    scopus 로고
    • Real Algebraic Curves, the Moment Map and Amoebas
    • G. Mikhalkin. “Real Algebraic Curves, the Moment Map and Amoebas.” Ann. of Math. 151 (2000), 309-326
    • (2000) Ann. of Math , vol.151 , pp. 309-326
    • Mikhalkin, G.1
  • 19
    • 25744468256 scopus 로고    scopus 로고
    • Ph.D. diss. Stockholm University, 2001, available as Research Report No. 8
    • H. Rullgård, “Polynomial Amoebas and Convexity.” Ph.D. diss. Stockholm University, 2001, available as Research Report No. 8, 2001.
    • (2001) Polynomial Amoebas and Convexity
    • Rullgård, H.1
  • 23
    • 0001656792 scopus 로고    scopus 로고
    • PHC pack: A General- Purpose Solver for Polynomial Systems by Homotopy Continuation
    • J. Verschelde. “PHC pack: A General- Purpose Solver for Polynomial Systems by Homotopy Continuation.” ACM Trans. Math. Software (1999), 251-276.
    • (1999) ACM Trans. Math. Software , pp. 251-276
    • Verschelde, J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.