-
2
-
-
85010096565
-
Morphology-dependant resonances
-
P. W. Barber and R. K. Chang, World Scientific, Singapore
-
S. C. Hill and R. E. Benner, “Morphology-dependant resonances,” in Optical Effects Associated with Small Particles, P. W. Barber and R. K. Chang, eds. (World Scientific, Singapore, 1988).
-
(1988)
Optical Effects Associated with Small Particles
-
-
Hill, S.C.1
Benner, R.E.2
-
3
-
-
0003499034
-
-
R. K. Chang and A. J. Campillo, World Scientific, Singapore
-
R. K. Chang and A. J. Campillo, eds., Optical Processes in Microcavities (World Scientific, Singapore, 1996).
-
(1996)
Optical Processes in Microcavities
-
-
-
4
-
-
0002973999
-
Nonlinear optics in droplets
-
O. Keller, Nova Science, New York
-
S. C. Hill and R. K. Chang, “Nonlinear optics in droplets,” in Studies in Classical and Quantum Nonlinear Optics, O. Keller, ed. (Nova Science, New York, 1995).
-
(1995)
Studies in Classical and Quantum Nonlinear Optics
-
-
Hill, S.C.1
Chang, R.K.2
-
5
-
-
84975560624
-
Radial profiling of microdrop-lets using cavity-enhanced Raman spectroscopy
-
H. B. Lin and A. J. Campillo, “Radial profiling of microdrop-lets using cavity-enhanced Raman spectroscopy,” Opt. Lett. 20, 1589-1591 (1995).
-
(1995)
Opt. Lett
, vol.20
, pp. 1589-1591
-
-
Lin, H.B.1
Campillo, A.J.2
-
6
-
-
0001184012
-
Investigation of coated droplets in an optical trap: Raman scattering, elastic light scattering and evaporation characteristics
-
T. Kaiser, G. Roll, and G. Schweiger, “Investigation of coated droplets in an optical trap: Raman scattering, elastic light scattering and evaporation characteristics,” Appl. Opt. 35, 5918-5924 (1996).
-
(1996)
Appl. Opt
, vol.35
, pp. 5918-5924
-
-
Kaiser, T.1
Roll, G.2
Schweiger, G.3
-
7
-
-
0028668552
-
Determination of size, refractive index, and dispersion of single droplets from wavelength-dependent scattering spectra
-
J. L. Huckaby, A. K. Ray, and B. Das, “Determination of size, refractive index, and dispersion of single droplets from wavelength-dependent scattering spectra,” Appl. Opt. 33, 7112-7125 (1994).
-
(1994)
Appl. Opt
, vol.33
, pp. 7112-7125
-
-
Huckaby, J.L.1
Ray, A.K.2
Das, B.3
-
8
-
-
0029714834
-
Laser diagnostics for droplet characterization: Application of morphology dependent resonances
-
G. Chen, M. M. Mazumder, R. K. Chang, J. C. Swindal, and W. P. Acker, “Laser diagnostics for droplet characterization: Application of morphology dependent resonances,” Prog. Energy Combust. Sci. 22, 163 -188 (1996).
-
(1996)
Prog. Energy Combust. Sci
, vol.22
-
-
Chen, G.1
Mazumder, M.M.2
Chang, R.K.3
Swindal, J.C.4
Acker, W.P.5
-
9
-
-
0002438862
-
Asymptotic solution of eigenvalue problems
-
New York
-
J. B. Keller and S. I. Rubinow, “Asymptotic solution of eigenvalue problems,” Ann. Phys. (New York) 9, 24-75 (1960).
-
(1960)
Ann. Phys
, vol.9
, pp. 24-75
-
-
Keller, J.B.1
Rubinow, S.I.2
-
10
-
-
84892294830
-
Ray-optical techniques for guided waves
-
S. J. Maurer and L. B. Felsen, “Ray-optical techniques for guided waves,” Proc. IEEE 55, 1718-1729 (1967).
-
(1967)
Proc. IEEE
, vol.55
, pp. 1718-1729
-
-
Maurer, S.J.1
Felsen, L.B.2
-
11
-
-
0032209608
-
Ray interpretation of multipole fields in spherical dielectric cavities
-
G. Roll, T. Kaiser, S. Lange, and G. Schweiger, “Ray interpretation of multipole fields in spherical dielectric cavities,” J. Opt. Soc. Am. A 15, 2879-2891 (1998).
-
(1998)
J. Opt. Soc. Am. A
, vol.15
, pp. 2879-2891
-
-
Roll, G.1
Kaiser, T.2
Lange, S.3
Schweiger, G.4
-
12
-
-
0003224826
-
Eigenmodes of spherical dielectric cavities: Coupling of internal and external rays
-
G. Roll, T. Kaiser, and G. Schweiger, “Eigenmodes of spherical dielectric cavities: Coupling of internal and external rays,” J. Opt. Soc. Am. A 16, 882-895 (1999).
-
(1999)
J. Opt. Soc. Am. A
, vol.16
, pp. 882-895
-
-
Roll, G.1
Kaiser, T.2
Schweiger, G.3
-
17
-
-
0003182840
-
Cooperative effects among partial waves in Mie scattering
-
J. A. Lock, “Cooperative effects among partial waves in Mie scattering,” J. Opt. Soc. Am. A 5, 2032-2044 (1988).
-
(1988)
J. Opt. Soc. Am. A
, vol.5
, pp. 2032-2044
-
-
Lock, J.A.1
-
19
-
-
77049126553
-
Resonance structure of Mie scattering: Distance between resonances
-
P. Chylek, “Resonance structure of Mie scattering: Distance between resonances,” J. Opt. Soc. Am. A 7, 1609-1613 (1990).
-
(1990)
J. Opt. Soc. Am. A
, vol.7
, pp. 1609-1613
-
-
Chylek, P.1
-
20
-
-
0021481548
-
Resonance component of backscatter-ing by large dielectric spheres
-
J. R. Probert-Jones, “Resonance component of backscatter-ing by large dielectric spheres,” J. Opt. Soc. Am. A 1, 822-830 (1984).
-
(1984)
J. Opt. Soc. Am. A
, vol.1
-
-
Probert-Jones, J.R.1
-
21
-
-
0037630030
-
Morphology-dependent stimulated Raman scattering imaging. I. Theoretical aspects
-
P. M. Aker, P. A. Moortgat, and J. X. Zhang, “Morphology-dependent stimulated Raman scattering imaging. I. Theoretical aspects,” J. Chem. Phys. 105, 7268-7275 (1996).
-
(1996)
J. Chem. Phys
, vol.105
, pp. 7268-7275
-
-
Aker, P.M.1
Moortgat, P.A.2
Zhang, J.X.3
-
22
-
-
84960373394
-
Explicit asymptotic formulas for the positions, widths, and strength of resonances in Mie scattering
-
C. C. Lam, P. T. Leung, and K. Young, “Explicit asymptotic formulas for the positions, widths, and strength of resonances in Mie scattering,” J. Opt. Soc. Am. B 9, 1585-1592 (1992).
-
(1992)
J. Opt. Soc. Am. B
, vol.9
, pp. 1585-1592
-
-
Lam, C.C.1
Leung, P.T.2
Young, K.3
-
23
-
-
0027544999
-
Theory of morphology-dependent resonances: Shape resonances and width formulas
-
B. R. Johnson, “Theory of morphology-dependent resonances: Shape resonances and width formulas,” J. Opt. Soc. Am. A 10, 343-352 (1993).
-
(1993)
J. Opt. Soc. Am. A
, vol.10
, pp. 343-352
-
-
Johnson, B.R.1
-
24
-
-
85010110970
-
At first glance this may be surprising, since we always assumed the rays to be confined by total internal reflection, which should mean T = 0. However
-
Consequently the energy loss-although small-is not zero
-
At first glance this may be surprising, since we always assumed the rays to be confined by total internal reflection, which should mean. However, owing to the curved surface, the energy confinement is not perfect, but there is a so-called evanescent leakage. Consequently the energy loss-although small-is not zero.
-
Owing to the Curved Surface, the Energy Confinement is Not Perfect, but There is a So-Called Evanescent Leakage
-
-
-
25
-
-
85010117240
-
Controlled modification of the expansion order as a tool in Mie computations
-
G. Roll, T. Kaiser, and G. Schweiger, “Controlled modification of the expansion order as a tool in Mie computations,” Appl. Opt. 37, 2483-2492 (1998).
-
(1998)
Appl. Opt
, vol.37
, pp. 2483-2492
-
-
Roll, G.1
Kaiser, T.2
Schweiger, G.3
|