메뉴 건너뛰기




Volumn , Issue , 2003, Pages 638-645

A new approximation algorithm for the asymmetric TSP with triangle inequality

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTATIONAL COMPLEXITY; COMPUTER SIMULATION; GRAPH THEORY; LINEAR PROGRAMMING; THEOREM PROVING; TRAVELING SALESMAN PROBLEM;

EID: 0038416006     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (43)

References (20)
  • 7
    • 0012540566 scopus 로고
    • Worst-case analysis of a new heuristic for the travelling salesman problem
    • In J. F. Traub, editor; Academic Press
    • Nicos Christofides. Worst-case analysis of a new heuristic for the travelling salesman problem. In J. F. Traub, editor, Algorithms and Complexity: New Directions and Recent Results, page 441. Academic Press, 1976.
    • (1976) Algorithms and Complexity: New Directions and Recent Results , pp. 441
    • Christofides, N.1
  • 8
    • 0032108328 scopus 로고    scopus 로고
    • A threshold of ln n for approximating set cover
    • Uri Feige. A threshold of ln n for approximating set cover. J. ACM, 45:634-652, 1998.
    • (1998) J. ACM , vol.45 , pp. 634-652
    • Feige, U.1
  • 9
    • 0020097689 scopus 로고
    • On the worst-case performance of some algorithms for the asymmetric traveling salesman problem
    • A. M. Frieze, G. Galbiati, and F. Maffioli. On the worst-case performance of some algorithms for the asymmetric traveling salesman problem. Networks, 12(1):23-39, 1982.
    • (1982) Networks , vol.12 , Issue.1 , pp. 23-39
    • Frieze, A.M.1    Galbiati, G.2    Maffioli, F.3
  • 10
    • 0038099294 scopus 로고
    • R. L. Garham, M. Grötschel, and L. Lovász, editors; Elvsevier
    • R. L. Garham, M. Grötschel, and L. Lovász, editors. Handbook of Combinatorics, volume II. Elvsevier, 1995.
    • (1995) Handbook of Combinatorics , vol.2
  • 11
    • 0038438337 scopus 로고
    • R. L. Graham, M. Grötschel, and L. Lovász, editors; Elvsevier
    • R. L. Graham, M. Grötschel, and L. Lovász, editors. Handbook of Combinatorics, volume I. Elvsevier, 1995.
    • (1995) Handbook of Combinatorics , vol.1
  • 12
    • 0001050402 scopus 로고
    • The travelling salesman problem and minimum spanning trees
    • Michael Held and Richard M. Karp. The travelling salesman problem and minimum spanning trees. Operations Research, 18:1138-1162, 1970.
    • (1970) Operations Research , vol.18 , pp. 1138-1162
    • Held, M.1    Karp, R.M.2
  • 13
    • 0016349356 scopus 로고
    • Approximation algorithms for combinatorial problems
    • D. S. Johnson. Approximation algorithms for combinatorial problems. J. Comput. Syst. Sci, 9:256-278, 1974.
    • (1974) J. Comput. Syst. Sci , vol.9 , pp. 256-278
    • Johnson, D.S.1
  • 15
    • 0003408279 scopus 로고
    • E. L. Lawler, J. K. Lenstra, A. H. G. Rinnooy Kan, and D. B. Shmoys, editors; Wiley
    • E. L. Lawler, J. K. Lenstra, A. H. G. Rinnooy Kan, and D. B. Shmoys, editors. The Traveling Salesman Problem. Wiley, 1985.
    • (1985) The Traveling Salesman Problem
  • 18
    • 0001805669 scopus 로고
    • The traveling salesman problem with distances one and two
    • C. H. Papadimitriou and M. Yannakakis. The traveling salesman problem with distances one and two. Math. Operations Research, 18:1-11, 1993.
    • (1993) Math. Operations Research , vol.18 , pp. 1-11
    • Papadimitriou, C.H.1    Yannakakis, M.2
  • 20
    • 0004312304 scopus 로고    scopus 로고
    • Lecture notes on approximation algorithms
    • Technical Report RC 21409, IBM T. J. Watson Research Center
    • David P. Williamson. Lecture notes on approximation algorithms. Technical Report RC 21409, IBM T. J. Watson Research Center, 1999.
    • (1999)
    • Williamson, D.P.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.