-
1
-
-
0003515463
-
-
Prentice Hall
-
Ravindra K. Ahuja, Thomas L. Magnanti, and James B. Orlin. Network Flows: Theory, Algorithms, and Applications. Prentice Hall, 1993.
-
(1993)
Network Flows: Theory, Algorithms, and Applications
-
-
Ahuja, R.K.1
Magnanti, T.L.2
Orlin, J.B.3
-
4
-
-
84944033698
-
An improved lower bound on the approximability of metric TSP and approximation algorithms for the TSP with sharpened triangle inequality
-
Springer
-
J. Böckenhauer, J. Hromkovič, R. Klasing, S. Seibert, and W. Unger. An improved lower bound on the approximability of metric TSP and approximation algorithms for the TSP with sharpened triangle inequality. In Proc. 17th Int. Symp. on Theoret. Aspects of Comput. Sci. (STACS), volume 1770 of Lecture Notes in Comput. Sci., pages 382-394. Springer 2000.
-
(2000)
Proc. 17th Int. Symp. on Theoret. Aspects of Comput. Sci. (STACS), Volume 1770 of Lecture Notes in Comput. Sci.
, pp. 382-394
-
-
Böckenhauer, J.1
Hromkovič, J.2
Klasing, R.3
Seibert, S.4
Unger, W.5
-
7
-
-
0012540566
-
Worst-case analysis of a new heuristic for the travelling salesman problem
-
In J. F. Traub, editor; Academic Press
-
Nicos Christofides. Worst-case analysis of a new heuristic for the travelling salesman problem. In J. F. Traub, editor, Algorithms and Complexity: New Directions and Recent Results, page 441. Academic Press, 1976.
-
(1976)
Algorithms and Complexity: New Directions and Recent Results
, pp. 441
-
-
Christofides, N.1
-
8
-
-
0032108328
-
A threshold of ln n for approximating set cover
-
Uri Feige. A threshold of ln n for approximating set cover. J. ACM, 45:634-652, 1998.
-
(1998)
J. ACM
, vol.45
, pp. 634-652
-
-
Feige, U.1
-
9
-
-
0020097689
-
On the worst-case performance of some algorithms for the asymmetric traveling salesman problem
-
A. M. Frieze, G. Galbiati, and F. Maffioli. On the worst-case performance of some algorithms for the asymmetric traveling salesman problem. Networks, 12(1):23-39, 1982.
-
(1982)
Networks
, vol.12
, Issue.1
, pp. 23-39
-
-
Frieze, A.M.1
Galbiati, G.2
Maffioli, F.3
-
10
-
-
0038099294
-
-
R. L. Garham, M. Grötschel, and L. Lovász, editors; Elvsevier
-
R. L. Garham, M. Grötschel, and L. Lovász, editors. Handbook of Combinatorics, volume II. Elvsevier, 1995.
-
(1995)
Handbook of Combinatorics
, vol.2
-
-
-
11
-
-
0038438337
-
-
R. L. Graham, M. Grötschel, and L. Lovász, editors; Elvsevier
-
R. L. Graham, M. Grötschel, and L. Lovász, editors. Handbook of Combinatorics, volume I. Elvsevier, 1995.
-
(1995)
Handbook of Combinatorics
, vol.1
-
-
-
12
-
-
0001050402
-
The travelling salesman problem and minimum spanning trees
-
Michael Held and Richard M. Karp. The travelling salesman problem and minimum spanning trees. Operations Research, 18:1138-1162, 1970.
-
(1970)
Operations Research
, vol.18
, pp. 1138-1162
-
-
Held, M.1
Karp, R.M.2
-
13
-
-
0016349356
-
Approximation algorithms for combinatorial problems
-
D. S. Johnson. Approximation algorithms for combinatorial problems. J. Comput. Syst. Sci, 9:256-278, 1974.
-
(1974)
J. Comput. Syst. Sci
, vol.9
, pp. 256-278
-
-
Johnson, D.S.1
-
14
-
-
0003390495
-
Experimental analysis of heuristics for the ATSP
-
In G. Gutin and A. P. Punnen, editors; Kluwer
-
David S. Johnson, Gregory Gutin, Lyle A. McGeoch, Anders Yeo, Weixiong Zhang, and Alexei Zverovitch. Experimental analysis of heuristics for the ATSP. In G. Gutin and A. P. Punnen, editors, The Traveling Salesman Problem and Its Variations, volume 12 of Combinatorial Optimization. Kluwer, 2002.
-
(2002)
The Traveling Salesman Problem and Its Variations, Volume 12 of Combinatorial Optimization
-
-
Johnson, D.S.1
Gutin, G.2
McGeoch, L.A.3
Yeo, A.4
Zhang, W.5
Zverovitch, A.6
-
15
-
-
0003408279
-
-
E. L. Lawler, J. K. Lenstra, A. H. G. Rinnooy Kan, and D. B. Shmoys, editors; Wiley
-
E. L. Lawler, J. K. Lenstra, A. H. G. Rinnooy Kan, and D. B. Shmoys, editors. The Traveling Salesman Problem. Wiley, 1985.
-
(1985)
The Traveling Salesman Problem
-
-
-
20
-
-
0004312304
-
Lecture notes on approximation algorithms
-
Technical Report RC 21409, IBM T. J. Watson Research Center
-
David P. Williamson. Lecture notes on approximation algorithms. Technical Report RC 21409, IBM T. J. Watson Research Center, 1999.
-
(1999)
-
-
Williamson, D.P.1
|