-
2
-
-
4243299955
-
Not every γ-set is strongly meager
-
Amer. Math. Soc., Providence, RI
-
T. Bartoszyński and I. Recław, Not every γ-set is strongly meager, in: Set Theory (Boise, ID, 1992-1994), Contemp. Math. 192, Amer. Math. Soc., Providence, RI, 1996, 25-29.
-
(1996)
Set Theory (Boise, ID, 1992-1994), Contemp. Math.
, vol.192
, pp. 25-29
-
-
Bartoszyński, T.1
Recław, I.2
-
3
-
-
0003270933
-
Set theory for the working mathematician
-
Cambridge Univ. Press
-
K. Ciesielski, Set Theory for the Working Mathematician, London Math. Soc. Stud. Texts 39, Cambridge Univ. Press, 1997.
-
(1997)
London Math. Soc. Stud. Texts
, vol.39
-
-
Ciesielski, K.1
-
5
-
-
0038644574
-
cube and its consequences
-
Preprint* available
-
cube and its consequences, Fund. Math. 176 (2003), 63-75. (Preprint* available.)
-
(2003)
Fund. Math.
, vol.176
, pp. 63-75
-
-
-
6
-
-
0038653638
-
-
version of September, work in progress*
-
_, _, Covering Property Axiom CPA, version of September 2002, work in progress*.
-
(2002)
Covering Property Axiom CPA
-
-
-
7
-
-
0001740764
-
γ-sets and other singular sets of real numbers
-
F. Galvin and A. W. Miller, γ-sets and other singular sets of real numbers, Topology Appl. 17 (1984), 145-155.
-
(1984)
Topology Appl.
, vol.17
, pp. 145-155
-
-
Galvin, F.1
Miller, A.W.2
-
8
-
-
49049135092
-
Some properties of C(X), I
-
J. Gerlits and Zs. Nagy, Some properties of C(X), I, Topology Appl. 14 (1982), 151-161.
-
(1982)
Topology Appl.
, vol.14
, pp. 151-161
-
-
Gerlits, J.1
Nagy, Zs.2
-
9
-
-
0038042903
-
Generalizing the Blumberg theorem
-
Preprint* available
-
F. Jordan, Generalizing the Blumberg theorem, Real Anal. Exchange 27 (2001-2002), 423-439. (Preprint* available.)
-
(2001)
Real Anal. Exchange
, vol.27
, pp. 423-439
-
-
Jordan, F.1
-
10
-
-
33750103564
-
1 disjoint closed sets
-
North-Holland, Amsterdam
-
1 disjoint closed sets, in: The Kleene Symposium, North-Holland, Amsterdam, 1980, 415-421.
-
(1980)
The Kleene Symposium
, pp. 415-421
-
-
Miller, A.W.1
-
11
-
-
0037977263
-
ω
-
Preprint* available
-
ω, Colloq. Math. 93 (2002), 251-258. (Preprint* available.)
-
(2002)
Colloq. Math.
, vol.93
, pp. 251-258
-
-
Nowik, A.1
-
12
-
-
0011555625
-
Every Lusin set is undetermined in the point-open game
-
I. Recław, Every Lusin set is undetermined in the point-open game, Fund. Math. 144 (1994), 43-54.
-
(1994)
Fund. Math.
, vol.144
, pp. 43-54
-
-
Recław, I.1
|