메뉴 건너뛰기




Volumn 131, Issue 6, 2003, Pages 1763-1769

A weak-type orthogonality principle

Author keywords

[No Author keywords available]

Indexed keywords


EID: 0038401080     PISSN: 00029939     EISSN: None     Source Type: Journal    
DOI: 10.1090/s0002-9939-02-06744-8     Document Type: Conference Paper
Times cited : (7)

References (7)
  • 1
    • 0001498106 scopus 로고
    • On convergence and growth of partial sums of Fourier series
    • MR 33:7774
    • L. Carleson. "On convergence and growth of partial sums of Fourier series." Acta Math. 116 (1966) pp. 135-157. MR 33:7774
    • (1966) Acta Math. , vol.116 , pp. 135-157
    • Carleson, L.1
  • 2
    • 0038879325 scopus 로고    scopus 로고
    • The bilinear Hubert transform is pointwise finite
    • MR 99j:42009
    • M.T. Lacey. "The bilinear Hubert transform is pointwise finite." Rev. Mat. 13 (1997) 403-469. MR 99j:42009
    • (1997) Rev. Mat. , vol.13 , pp. 403-469
    • Lacey, M.T.1
  • 4
    • 0001283252 scopus 로고    scopus 로고
    • p estimates for the bilinear Hubert transform, p > 2
    • MR 99b:42014
    • p estimates for the bilinear Hubert transform, p > 2." Ann. Math. 146 (1997) 693-724. MR 99b:42014
    • (1997) Ann. Math. , vol.146 , pp. 693-724
    • Lacey, M.T.1    Thiele, C.M.2
  • 5
    • 0000981459 scopus 로고    scopus 로고
    • Brushlets: A tool for directional image analysis and image compression
    • MR 99c:42069
    • F.G. Meyer and R.R. Coifman. "Brushlets: A tool for directional image analysis and image compression." Appl. Comp. Harmonic Anal. 4 (1997) 147-187. MR 99c:42069
    • (1997) Appl. Comp. Harmonic Anal. , vol.4 , pp. 147-187
    • Meyer, F.G.1    Coifman, R.R.2
  • 6
    • 0038114904 scopus 로고
    • On the two proof of pointwise convergence of Fourier series
    • MR 83i:42005
    • E. Prestini. "On the two proof of pointwise convergence of Fourier series." Amer. J. Math. 104 (1982) 127-139. MR 83i:42005
    • (1982) Amer. J. Math. , vol.104 , pp. 127-139
    • Prestini, E.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.