-
1
-
-
0003255464
-
Nonlinear Analysis on Manifolds: Monge-Ampere Equations
-
Springer-Verlag, Berlin
-
T. Aubin, Nonlinear Analysis on Manifolds: Monge-Ampere Equations, Grundlehren der Mathematischen Wissenschaften, 252, Springer-Verlag, Berlin, 1982.
-
(1982)
Grundlehren Der Mathematischen Wissenschaften
, vol.252
-
-
Aubin, T.1
-
2
-
-
84972498579
-
Problemes isoperimetriques et espaces de Sobolev
-
T. Aubin, Problemes isoperimetriques et espaces de Sobolev, J. Differential Geom. 11 (1976) 573-598.
-
(1976)
J. Differential Geom
, vol.11
, pp. 573-598
-
-
Aubin, T.1
-
3
-
-
0033114779
-
On the best Sobolev inequality
-
T. Aubin & Y.Y. Li, On the best Sobolev inequality, J. Math. Pure Appl. 78 (1999) 353-387.
-
(1999)
J. Math. Pure Appl
, vol.78
, pp. 353-387
-
-
Aubin, T.1
Li, Y.Y.2
-
4
-
-
84963015788
-
An integral inequality
-
G.A. Bliss, An integral inequality, J. London Math. Soc. 5 (1930) 40-46.
-
(1930)
J. London Math. Soc
, vol.5
, pp. 40-46
-
-
Bliss, G.A.1
-
5
-
-
0030533361
-
Levy-Gromov’s isoperimetric inequality for an infinite dimensional diffusion generator
-
D. Bakry & M. Ledoux, Levy-Gromov’s isoperimetric inequality for an infinite dimensional diffusion generator, Invent. Math. 123 (1996) 259-281.
-
(1996)
Invent. Math
, vol.123
, pp. 259-281
-
-
Bakry, D.1
Ledoux, M.2
-
6
-
-
0000759151
-
Sharp Sobolev inequalities on the sphere and the Moser-Trudinger inequality
-
W. Beckner, Sharp Sobolev inequalities on the sphere and the Moser-Trudinger inequality, Annals Math. 138 (1993) 213-242.
-
(1993)
Annals Math
, vol.138
, pp. 213-242
-
-
Beckner, W.1
-
7
-
-
0031987054
-
On sharp Sobolev embedding and the logarithmic Sobolev inequality
-
W. Beckner & M. Pearson, On sharp Sobolev embedding and the logarithmic Sobolev inequality, Bull. Lond. Math. Soc. 30 (1998) 80-84.
-
(1998)
Bull. Lond. Math. Soc
, vol.30
, pp. 80-84
-
-
Beckner, W.1
Pearson, M.2
-
8
-
-
0031232439
-
Some connections between isoperimetric and Sobolev-type inequalities
-
S. Bobkov & C. Houdre, Some connections between isoperimetric and Sobolev-type inequalities, Memoirs of Amer. Math. Soc., 616, 1997.
-
(1997)
Memoirs of Amer. Math. Soc.
, pp. 616
-
-
Bobkov, S.1
Houdre, C.2
-
9
-
-
84990613834
-
Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents
-
H. Brezis & L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Comm. Pure Appl. Math. 36 (1983) 437-477.
-
(1983)
Comm. Pure Appl. Math
, vol.36
, pp. 437-477
-
-
Brezis, H.1
Nirenberg, L.2
-
10
-
-
0003350839
-
Geometric Inequalities
-
Springer-Verlag, Berlin
-
Yu.D. Burago & V.A. Zalgaller, Geometric Inequalities, Grundlehren der Mathematischen Wissenschaften, 285, Springer-Verlag, Berlin, 1988.
-
(1988)
Grundlehren Der Mathematischen Wissenschaften
, vol.285
-
-
Burago, Y.1
Zalgaller, V.A.2
-
11
-
-
0037091874
-
The Lp-Buseman-Petty centroid inequality
-
S. Campi & P. Gronchi, The Lp-Buseman-Petty centroid inequality, Adv. Math. 167(1) (2002) 128-141.
-
(2002)
Adv. Math
, vol.167
, Issue.1
, pp. 128-141
-
-
Campi, S.1
Gronchi, P.2
-
12
-
-
38249020884
-
Extremals of functionals with competing symmetry
-
E. Carlen & M. Loss, Extremals of functionals with competing symmetry J. Funct. Anal. 88 (1990) 437-456.
-
(1990)
J. Funct. Anal
, vol.88
, pp. 437-456
-
-
Carlen, E.1
Loss, M.2
-
13
-
-
0001611867
-
On the existence of an extremal function for an inequality of J. Moser
-
L. Carleson & S.Y.A. Chang, On the existence of an extremal function for an inequality of J. Moser, Bull. Sci. Math. 110 (1986) 113-127.
-
(1986)
Bull. Sci. Math
, vol.110
, pp. 113-127
-
-
Carleson, L.1
Chang, S.Y.A.2
-
14
-
-
2442569048
-
The Moser-Trudinger inequality and applications to some problems in conformal geometry
-
Park City, UT, 1992, IAS/Park City Math. Ser., 2, Amer. Math. Soc., Providence, RI
-
S.Y.A. Chang, The Moser-Trudinger inequality and applications to some problems in conformal geometry, Nonlinear partial differential equations in differential geometry (Park City, UT, 1992), 65-125, IAS/Park City Math. Ser., 2, Amer. Math. Soc., Providence, RI, 1996.
-
(1996)
Nonlinear Partial Differential Equations in Differential Geometry
, pp. 65-125
-
-
Chang, S.Y.A.1
-
16
-
-
0001216371
-
Optimal Sobolev inequalities of arbitrary order on Riemannian compact manifolds
-
O. Druet, Optimal Sobolev inequalities of arbitrary order on Riemannian compact manifolds, J. Funct. Anal. 159 (1998) 217-242.
-
(1998)
J. Funct. Anal
, vol.159
, pp. 217-242
-
-
Druet, O.1
-
18
-
-
0000562793
-
Normal and, integral currents
-
H. Federer & W. Fleming, Normal and, integral currents, Ann. Math. 72 (1960) 458-520.
-
(1960)
Ann. Math
, vol.72
, pp. 458-520
-
-
Federer, H.1
Fleming, W.2
-
20
-
-
0009389702
-
Isoperimetric inequalities in Riemannian manifolds
-
(by V.D. Milman and G. Schecht-man), Lect. Notes in Math, Springer-Verlag, Berlin
-
M. Gromov, Isoperimetric inequalities in Riemannian manifolds, in ‘Asymptotic Theory of Finite Dimensional Normed Spaces’ (by V.D. Milman and G. Schecht-man), Lect. Notes in Math., 1200, Springer-Verlag, Berlin, 1986.
-
(1986)
Asymptotic Theory of Finite Dimensional Normed Spaces
, vol.1200
-
-
Gromov, M.1
-
21
-
-
0038685490
-
An isoperimetric estimate for the Ricci flow on the two-sphere
-
(Princeton, NJ, 1992), Princeton Univ. Press, Princeton, NJ
-
R. Hamilton, An isoperimetric estimate for the Ricci flow on the two-sphere, in ‘Modern methods in complex analysis’ (Princeton, NJ, 1992), 191-200, Ann. of Math. Stud., 137, Princeton Univ. Press, Princeton, NJ, 1995.
-
(1995)
Modern Methods in Complex Analysis
, vol.137
, pp. 191-200
-
-
Hamilton, R.1
-
22
-
-
0003286319
-
Nonlinear Analysis on Manifolds: Sobolev Spaces and Inequalities
-
New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI
-
E. Hebey, Nonlinear Analysis on Manifolds: Sobolev Spaces and Inequalities, Courant Lecture Notes in Mathematics, 5, New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI, 1999.
-
(1999)
Courant Lecture Notes in Mathematics
, vol.5
-
-
Hebey, E.1
-
23
-
-
84974004186
-
The best constant problem in the Sobolev embedding theorem for complete Riemannian manifolds
-
E. Hebey & Vaugon, V, The best constant problem in the Sobolev embedding theorem for complete Riemannian manifolds, Duke Math. J. T9 (1995) 235-279.
-
(1995)
Duke Math. J
, vol.T9
, pp. 235-279
-
-
Hebey, E.1
Vaugon, V.2
-
24
-
-
0038685489
-
A Sobolev inequality for Riemannian submanifolds
-
Proc. Sympos. Pure Math., Vol, Stanford Univ., Stanford, Calif., 1973, Amer. Math. Soc., Providence, R.I
-
D. Hoffman & J. Spruck, A Sobolev inequality for Riemannian submanifolds, Differential geometry (Proc. Sympos. Pure Math., Vol. XXVII, Stanford Univ., Stanford, Calif., 1973), Part 1, 139-141. Amer. Math. Soc., Providence, R.I., 1975.
-
(1975)
Differential Geometry
, vol.27
, pp. 139-141
-
-
Hoffman, D.1
Spruck, J.2
-
25
-
-
84878385683
-
Affine geometry of convex bodies
-
Heidelberg
-
K. Leichtweiss, Affine geometry of convex bodies, Johann Ambrosius Barth, Heidelberg, 1998.
-
(1998)
Johann Ambrosius Barth
-
-
Leichtweiss, K.1
-
26
-
-
0032221698
-
Sharp Sobolev inequalities involving boundary terms
-
Y.Y. Li & M. Zhu, Sharp Sobolev inequalities involving boundary terms, Geom. Funct. Anal. S (1998) 59-87.
-
(1998)
Geom. Funct. Anal. S
, pp. 59-87
-
-
Li, Y.Y.1
Zhu, M.2
-
27
-
-
0000298073
-
Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities
-
E.H. Lieb, Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities, Annals of Math. 115 (1983) 349-374.
-
(1983)
Annals of Math
, vol.115
, pp. 349-374
-
-
Lieb, E.H.1
-
28
-
-
0001874829
-
On some affine isoperimetric inequalities
-
E. Lutwak, On some affine isoperimetric inequalities, J. Differential Geom. 23 (1986) 1-13.
-
(1986)
J. Differential Geom
, vol.23
, pp. 1-13
-
-
Lutwak, E.1
-
29
-
-
84972508818
-
The Brunn-Minkowski-Firey theory I: Mixed volumes and the Minkowski problem
-
E. Lutwak, The Brunn-Minkowski-Firey theory I: Mixed volumes and the Minkowski problem, J. Differential Geom. 38 (1993) 131-150.
-
(1993)
J. Differential Geom
, vol.38
, pp. 131-150
-
-
Lutwak, E.1
-
30
-
-
84972497535
-
On the regularity of solutions to a generalization of the Minkowski problem
-
E. Lutwak & V. Oliker, On the regularity of solutions to a generalization of the Minkowski problem, J. Differential Geom. 41 (1995) 227-246.
-
(1995)
J. Differential Geom
, vol.41
, pp. 227-246
-
-
Lutwak, E.1
Oliker, V.2
-
34
-
-
0001363544
-
Classes of domains and imbedding theorems for function spaces
-
V.G. Maz’ya, Classes of domains and imbedding theorems for function spaces, Dokl. Akad. Nauk. SSSR 133 (1960) 527-530.
-
(1960)
Dokl. Akad. Nauk. SSSR
, vol.133
, pp. 527-530
-
-
Maz’ya, V.G.1
-
35
-
-
0000190919
-
The isoperimetric inequality
-
R. Osserman, The isoperimetric inequality, Bull. Amer. Math. Soc. 84 (1978) 1182-1238.
-
(1978)
Bull. Amer. Math. Soc
, vol.84
, pp. 1182-1238
-
-
Osserman, R.1
-
37
-
-
0003333144
-
Convex Bodies: The Brunn-Minkowski Theory
-
Cambridge University Press, Cambridge
-
R. Schneider, Convex Bodies: The Brunn-Minkowski Theory, Encyclopedia of Mathematics and its Applications, 44, Cambridge University Press, Cambridge, 1993.
-
(1993)
Encyclopedia of Mathematics and Its Applications
, vol.44
-
-
Schneider, R.1
-
39
-
-
34250392866
-
Best constant in Sobolev inequality
-
G. Talenti, Best constant in Sobolev inequality Ann. Mat. Pura. Appl. 110 (1976) 353-372.
-
(1976)
Ann. Mat. Pura. Appl
, vol.110
, pp. 353-372
-
-
Talenti, G.1
-
41
-
-
0038008864
-
Sobolev inequality for measure space
-
Hsinchu, 1990-1991, Internat. Press, Cambridge, MA
-
S.-T. Yau, Sobolev inequality for measure space, Tsing Hua lectures on geometry and analysis (Hsinchu, 1990-1991), 299-313, Internat. Press, Cambridge, MA, 1997.
-
(1997)
Tsing Hua Lectures on Geometry and Analysis
, pp. 299-313
-
-
Yau, S.-T.1
-
42
-
-
0001846041
-
The affine Sobolev inequality
-
G. Zhang, The affine Sobolev inequality, J. Differential Geom. 53 (1999) 183-202.
-
(1999)
J. Differential Geom
, vol.53
, pp. 183-202
-
-
Zhang, G.1
|