메뉴 건너뛰기




Volumn , Issue , 2003, Pages 304-309

Representation of non-manifold objects through decomposition into nearly manifold parts

Author keywords

Non manifold modeling; Simplicial complexes

Indexed keywords

COMPUTER GRAPHICS; DATA STRUCTURES; TOPOLOGY;

EID: 0038379564     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (15)

References (11)
  • 2
    • 84958665880 scopus 로고    scopus 로고
    • Non-manifold decomposition in arbitrary dimension
    • A. Braquelaire, J.-O. Lachaud, and A. Vialard, Eds., LNCS, N.2301, Springer-Verlag. Extended version to appear in Graphical Models
    • L. De Floriani, M.M. Mesmoudi, F. Morando, and E. Puppo, Non-manifold decomposition in arbitrary dimension, in A. Braquelaire, J.-O. Lachaud, and A. Vialard, Eds., Discrete Geometry for Computer Imagery, LNCS, N.2301, Springer-Verlag, 2002, pp.69-80. Extended version to appear in Graphical Models.
    • (2002) Discrete Geometry for Computer Imagery , pp. 69-80
    • De Floriani, L.1    Mesmoudi, M.M.2    Morando, F.3    Puppo, E.4
  • 4
    • 0001809930 scopus 로고
    • Vertex-based representation of non-manifold boundaries
    • M. J. Wozny, J. U. Turner, and K. Preiss, Eds., North Holland
    • E. L. Gursoz, Y. Choi, and F. B. Prinz, Vertex-based representation of non-manifold boundaries, in M. J. Wozny, J. U. Turner, and K. Preiss, Eds., Geometric Modeling for Product Engineering, North Holland, 1990, pp. 107-130.
    • (1990) Geometric Modeling for Product Engineering , pp. 107-130
    • Gursoz, E.L.1    Choi, Y.2    Prinz, F.B.3
  • 5
    • 0034833560 scopus 로고    scopus 로고
    • Partial Entity structure: A fast and compact non-manifold boundary representation based on partial topological entities
    • Ann Arbor, Michigan
    • S.H. Lee and K. Lee, Partial Entity structure: a fast and compact non-manifold boundary representation based on partial topological entities, in Proceedings of the Sixth ACM Symposium on Solid Modeling and Applications, Ann Arbor, Michigan, 2001, pp. 159-170.
    • (2001) Proceedings of the Sixth ACM Symposium on Solid Modeling and Applications , pp. 159-170
    • Lee, S.H.1    Lee, K.2
  • 6
    • 0025721235 scopus 로고
    • Topological models for boundary representation: A comparison with n-dimensional generalized maps
    • P. Lienhardt, Topological models for boundary representation: a comparison with n-dimensional generalized maps, CAD, 23(1), pp.59-82, 1991.
    • (1991) CAD , vol.23 , Issue.1 , pp. 59-82
    • Lienhardt, P.1
  • 7
    • 0038092778 scopus 로고    scopus 로고
    • PhD Thesis, Department of Computer and Information Science, University of Genova (Italy), February
    • F. Morando, Decomposition and Modeling in the Non-Manifold domain, PhD Thesis, Department of Computer and Information Science, University of Genova (Italy), February 2003.
    • (2003) Decomposition and Modeling in the Non-Manifold Domain
    • Morando, F.1
  • 9
    • 0002351074 scopus 로고
    • SGC: A dimension-independent model for point sets with internal structures and incomplete boundaries
    • J.U. Turner M. J. Wozny and K. Preiss, Eds., North-Holland
    • J.R. Rossignac and M.A. O'Connor, SGC: A dimension-independent model for point sets with internal structures and incomplete boundaries, in J.U. Turner M. J. Wozny and K. Preiss, Eds., Geometric Modeling for Product Engineering, North-Holland, 1990, pp. 145-180.
    • (1990) Geometric Modeling for Product Engineering , pp. 145-180
    • Rossignac, J.R.1    O'Connor, M.A.2
  • 10
    • 0001771575 scopus 로고
    • The radial edge structure: A topological representation for non-manifold geometric boundary modeling
    • M.J. Wozny, H.W. McLauglin, J.L. Encamacao (eds), North-Holland
    • K. Weiler, The radial edge structure: A topological representation for non-manifold geometric boundary modeling, in M.J. Wozny, H.W. McLauglin, J.L. Encamacao (eds), Geometric Modeling for CAD Applications, North-Holland, 1988, pp.3-36.
    • (1988) Geometric Modeling for CAD Applications , pp. 3-36
    • Weiler, K.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.