-
2
-
-
0001504431
-
-
F. Wilczek and A. Zee, Phys. Rev. Lett. 52, 2111 (1984); for a review see, Geometric Phases in Physics, edited by A. Shapere and F. Wilczek (World Scientific, Singapore, 1989).
-
(1984)
Phys. Rev. Lett.
, vol.52
, pp. 2111
-
-
Wilczek, F.1
Zee, A.2
-
3
-
-
0001504431
-
-
World Scientific, Singapore
-
F. Wilczek and A. Zee, Phys. Rev. Lett. 52, 2111 (1984); for a review see, Geometric Phases in Physics, edited by A. Shapere and F. Wilczek (World Scientific, Singapore, 1989).
-
(1989)
Geometric Phases in Physics
-
-
Shapere, A.1
Wilczek, F.2
-
4
-
-
0033589996
-
-
P. Zanardi and M. Rasetti, Phys. Lett. A 264, 94 (1999); S. Seshadri, S. Lakshmibala, and V. Balakrishnan, Phys. Rev. A 55, 869 (1997); K. Fujii, "Introduction to Grassmann manifolds and quantum computation," to appear in J. Appl. Math., quant-ph/0103011; E. Ercolessi, G. Marmo, G. Morandi, and N. Mukunda, "Geometry of mixed states and degeneracy structure of geometric phases for multi-level quantum systems. A unitary group approach," quant-ph/0105007.
-
(1999)
Phys. Lett. A
, vol.264
, pp. 94
-
-
Zanardi, P.1
Rasetti, M.2
-
5
-
-
16944364303
-
-
P. Zanardi and M. Rasetti, Phys. Lett. A 264, 94 (1999); S. Seshadri, S. Lakshmibala, and V. Balakrishnan, Phys. Rev. A 55, 869 (1997); K. Fujii, "Introduction to Grassmann manifolds and quantum computation," to appear in J. Appl. Math., quant-ph/0103011; E. Ercolessi, G. Marmo, G. Morandi, and N. Mukunda, "Geometry of mixed states and degeneracy structure of geometric phases for multi-level quantum systems. A unitary group approach," quant-ph/0105007.
-
(1997)
Phys. Rev. A
, vol.55
, pp. 869
-
-
Seshadri, S.1
Lakshmibala, S.2
Balakrishnan, V.3
-
6
-
-
0242292437
-
Introduction to Grassmann manifolds and quantum computation
-
quant-ph/0103011
-
P. Zanardi and M. Rasetti, Phys. Lett. A 264, 94 (1999); S. Seshadri, S. Lakshmibala, and V. Balakrishnan, Phys. Rev. A 55, 869 (1997); K. Fujii, "Introduction to Grassmann manifolds and quantum computation," to appear in J. Appl. Math., quant-ph/0103011; E. Ercolessi, G. Marmo, G. Morandi, and N. Mukunda, "Geometry of mixed states and degeneracy structure of geometric phases for multi-level quantum systems. A unitary group approach," quant-ph/0105007.
-
J. Appl. Math.
-
-
Fujii, K.1
-
7
-
-
0033589996
-
-
quant-ph/0105007
-
P. Zanardi and M. Rasetti, Phys. Lett. A 264, 94 (1999); S. Seshadri, S. Lakshmibala, and V. Balakrishnan, Phys. Rev. A 55, 869 (1997); K. Fujii, "Introduction to Grassmann manifolds and quantum computation," to appear in J. Appl. Math., quant-ph/0103011; E. Ercolessi, G. Marmo, G. Morandi, and N. Mukunda, "Geometry of mixed states and degeneracy structure of geometric phases for multi-level quantum systems. A unitary group approach," quant-ph/0105007.
-
Geometry of Mixed States and Degeneracy Structure of Geometric Phases for Multi-Level Quantum Systems. A Unitary Group Approach
-
-
Ercolessi, E.1
Marmo, G.2
Morandi, G.3
Mukunda, N.4
-
12
-
-
4043152779
-
Quantum computation with trapped ions in an optical cavity
-
J. Pachos and H. Walther, "Quantum computation with trapped ions in an optical cavity," Phys. Rev. Lett. 89, 187903 (2002); A. Recati, T. Calarco, P. Zanardi, J. I. Cirac, and P. Zoller, "Holonomic quantum computation with neutral atoms," quant-ph/0204030.
-
(2002)
Phys. Rev. Lett.
, vol.89
, pp. 187903
-
-
Pachos, J.1
Walther, H.2
-
13
-
-
4043152779
-
-
quant-ph/0204030
-
J. Pachos and H. Walther, "Quantum computation with trapped ions in an optical cavity," Phys. Rev. Lett. 89, 187903 (2002); A. Recati, T. Calarco, P. Zanardi, J. I. Cirac, and P. Zoller, "Holonomic quantum computation with neutral atoms," quant-ph/0204030.
-
Holonomic Quantum Computation with Neutral Atoms
-
-
Recati, A.1
Calarco, T.2
Zanardi, P.3
Cirac, J.I.4
Zoller, P.5
-
14
-
-
0038253266
-
-
quant-ph/0301089
-
P. Solinas, P. Zanardi, N. Zanghi, and F. Rossi, "Nonadiabatic geometrical quantum gates in semiconductor quantum dots," quant-ph/0301089; "Holonomic quantum gates: A semiconductor-based implementation," quant-ph/0301090.
-
Nonadiabatic Geometrical Quantum Gates in Semiconductor Quantum Dots
-
-
Solinas, P.1
Zanardi, P.2
Zanghi, N.3
Rossi, F.4
-
15
-
-
0038591813
-
-
quant-ph/0301090
-
P. Solinas, P. Zanardi, N. Zanghi, and F. Rossi, "Nonadiabatic geometrical quantum gates in semiconductor quantum dots," quant-ph/0301089; "Holonomic quantum gates: A semiconductor-based implementation," quant-ph/0301090.
-
Holonomic Quantum Gates: A Semiconductor-Based Implementation
-
-
-
17
-
-
0033240108
-
-
For a generalization of the Abelian Stokes theorem to the non-Abelian case see R. L. Karp, F. Mansouri, and J. S. Ruo, J. Math. Phys. 40, 6033 (1999).
-
(1999)
J. Math. Phys.
, vol.40
, pp. 6033
-
-
Karp, R.L.1
Mansouri, F.2
Ruo, J.S.3
-
18
-
-
0036702192
-
-
I. Fuentes-Guridi, J. Pachos, S. Bose, V. Vedral, and S. Choi, Phys. Rev. A 66, 022102 (2002).
-
(2002)
Phys. Rev. A
, vol.66
, pp. 022102
-
-
Fuentes-Guridi, I.1
Pachos, J.2
Bose, S.3
Vedral, V.4
Choi, S.5
-
21
-
-
0009476409
-
-
AMS Contemporary Math Series volume entitled "Quantum computation and quantum information science," quant-ph/0003150
-
J. Pachos, "Quantum computation by geometrical means," published in the AMS Contemporary Math Series volume entitled "Quantum computation and quantum information science," quant-ph/0003150.
-
Quantum Computation by Geometrical Means
-
-
Pachos, J.1
|